網際網路交換中心業務於我國電信法上定位之探討

刊登期別
2005年06月
 

※ 網際網路交換中心業務於我國電信法上定位之探討, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=753&no=64&tp=1 (最後瀏覽日:2026/01/18)
引註此篇文章
你可能還會想看
美國聯邦最高法院於Michigan v. EPA案中認定減碳措施需先考量成本效益

歐盟第七期研發綱要計畫定案,有條件支持幹細胞研究

  歐盟日前正在加緊腳步為第七期研發綱要計畫( R&D Framework 2007-2013 )之規劃定案,與此同時,歐盟研發經費究竟應該如何挹注也成為討論焦點。歐洲議會產業研究暨能源委員會( Industry, Research and Energy (ITRE) Committee )最近通過第七期研發綱要計畫的預算,預算額度雖然從原本規劃的 72 億歐元減至約 54.5 億歐元左右,但相較於第七期研發綱要計畫,該經費仍成長許多。   此外 ITRE 也決定,基於倫理考量,以下的科技研究領域將無法獲得歐盟補助:複製人、人類基因體的遺傳性改變( heritable modifications of the human genome )、為取得幹細胞進行研究而複製人類胚胎。與此同時, ITRE 也重申,歐盟經費可以用於補助人類幹細胞的研究,只要幹細胞的來源不是經由複製人類胚胎兒取得,但研究者必須切實遵守會員國之相關科技政策及法令規定,研究之進行並應依法予以嚴格審核。   ITRE 前述決定目前已提交歐洲議會討論,預計在六月底前歐洲議會即可就此表決。儘管歐盟希望未來在第七期的研發綱要計畫期間內,對幹細胞研究仍延續其目前所採的政策 -- 資助一部份的幹細胞研究但禁止使用複製的幹細胞進行研究(目前歐盟會員國中,僅英國、瑞典、比利時三會員國允許複製胚胎幹細胞),惟由於幹細胞研究議題甚為敏感,且 2004 年 5 月 1 日 新加入的東歐會員國,其大多數在歐洲議會的代表都是天主教徒,故而有關幹細胞研究的議題,恐怕仍有一場激辯。

韓國公共行政安全部制定《公部門AI倫理原則》草案,以提升民眾對公部門應用AI之信任

2025年11月,韓國公共行政安全部(Ministry of the Interior and Safety,下稱MOIS)於新聞稿宣布制定《公部門AI倫理原則》草案,追求公益、公平無歧視、透明、問責明確、安全性及隱私保護等六大核心價值,旨於促進創新、提升民眾對公部門應用AI之信任。 一、適用範圍 《公部門AI倫理原則》草案適用對象為公部門,包含中央、地方政府機關等,其性質為不具強制力的指引。 二、檢核表分三階段漸進式管理 《公部門AI倫理原則》草案依AI 應用的複雜程度分為三階段漸進式管理,設計最高達90個細項的檢核表(Checklist),惟目前尚未公開詳細內容: (一)第一階段:基礎導入(AI基礎應用) 針對技術引進的初步活用階段,共包含31個檢核項目,旨在建立基礎的倫理合規防線。 (二)第二階段:進階應用(AI決策支援) 適用於AI提供資料分析與建議以輔助人員進行行政決策的情境。隨著影響力提升,檢核項目擴增至74個,強化透明性與責任性的審查。 (三)第三階段:深度融合(AI自主決策) 針對AI具備高度自主決策權的高風險情境(如自主化服務或複雜判斷),執行最嚴密的倫理檢查,共達90個檢核項目。 建議公部門依檢核表自行檢查,並依結果建立「調整與回饋」的循環機制,以因應不斷變化的技術環境。 MOIS部長指出,未來將進一步蒐集學界意見以完備倫理原則,並開發一套AI倫理原則之培訓課程,確保一線能落實執行這90個檢核項目,保障人權與基本權利。 由於目前未見90個檢核項目內容,值得持續追蹤後續進展。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP