看準消費者利用網路就其各別消費經驗進行評論的商機,不少業者紛紛提供專門作為消費評論的網路平台服務,例如美國最大評論網站yelp以及臺灣的「愛評網」等評論網站。然而,消費者若在網路上就其消費經驗對特定商家發表負面評論,難免對於商家的商譽或營業表現造成影響,因此部分商家試圖利用各種手段避免消費者於熱門評論網站中發表負面評論。最常見的手段為商家藉由其與消費者間的契約中加入「禁止負面評論約款」(Nondisparagement Clause),向發表負面評論的消費者或經營評價網站的業者主張其契約上的權利,但該作法也導致消費者與商家間的法律層出不窮。 較為人所知的爭議案例為,一間位於紐約市的酒店因至該酒店參加婚宴的顧客於Yelp等評論網站上留下諸多負面評價,該酒店即依據契約向使用場地舉辦婚宴的新婚夫妻, 以每一則負面評價500美元為計,收取一筆高額的賠償金。另有較特別的案例為,紐約市有一名牙醫師於其與診所病患間的契約中明訂授權約款,將任何病患可能於就診後作成的負面評價,以著作權授權的方式授予該名牙醫師,而該名牙醫師復以被授權人的身分,依據該契約向Yelp等消費評價網站主張刪除網站上針對其所營診所的相關負面評價。 因應愈來愈多的商家藉各種手段試圖限制消費者在熱門評價網站上發表負面的消費經驗或評論,加州議院於2014年9月正式表決通過並由該州州長簽署,於民法中增訂第1670.8條(California Civil Code §1670.8)之規定,使消費者發表消費評論之自由能夠受到更完整的保障。依據該法之規定,消費者有權對其所消費商品或服務的出賣人、出租人或其受僱人與代理人發表陳述(statement);若任何契約禁止或限制消費者發表與其消費經驗相關評論之權利,則該契約應屬無效。總檢察長(Attorney General)以下的檢察官或個案消費者可透過民事程序向違反該法律規定者起訴,法院最高可以將行為人處以初犯2500元美金以及累犯每次5000美元的罰款。 馬里蘭州議會亦於2016年2月表決通過於該州《商業法》(Commercial Law)中增訂14.1325條(MD. Comm. Law gcl. §14.1325),該州法規定與上述加州州法同樣保障消費者對其消費經驗加以評論之權利,且違反該法的行為人除了將負擔1000美元及累犯每次5000元美金的罰款之外,若構成輕罪(misdemeanor)則可能被處以一年以下的拘禁,且得併科1000美元罰金。 除了上述二州對保障消費者消費評論的法制加以強化之外,美國國會也正在進行相關的立法工作。聯邦參議院於2015年12月表決通過《2015年消費者評論自由法》(Consumer Review Act of 2015),該法案(H.R.2110, 114th Cong. (2015-2016))目前於聯邦眾議院的「工商業與貿易委員會」(Subcommittee on Commerce, Manufacturing, and Trade)中待審。該部聯邦法除了將使任何禁止或限制消費者以任何方法評論商品或服務的契約效力歸於無效之外,更禁止商家與消費者約定移轉任何關於消費經驗評論的智慧財產權。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。
國際海事組織建立海上自駕船舶監理架構國際海事組織(International Maritime Organization, IMO)所屬之海事安全委員會(Maritime Safety Committee, MSC)於2018年12月召開第100屆大會(MSC 100),本屆會議批准海上自駕船舶監管架構,要點如下: 一、盤點相關國際海事組織規範,以確認該規範: 是否適用於海上自駕船舶(Maritime Autonomous Surface Ships, MASS)及是否妨礙其運作與航行;或 是否適用於海事海上自駕船舶且不妨礙其運作;或 是否適用於海事海上自駕船舶且不妨礙其運作,但需要進一步調修。 MSC預計相關規範之盤點結論將於2019年6月前完成,並期待於2020年完成相關法規調適,盤點範圍包括:安全規範(SOLAS)、碰撞規範(COLREG)、載重線與穩度(Load Lines Convention)、海員與漁夫訓練(STCW, STCW-F)、搜尋與救援(SAR)、噸位丈量(Tonnage Convention)、貨櫃安全(CSC)、以及特殊貿易客船(SPACE STP, STP)。 二、 定義海上自駕船舶之自動化等級: 等級1:配備有自動化處理與決策支援船舶,海員仍於船上對船舶系統及相關功能進行控制。某些功能可以於無人監控下自動化運作,但船員於船舶上仍應於自動駕駛系統發生故障時進行人為介入。 等級2:有船員隨船之遙控控制船。該船舶係由岸上人員控制,惟船上之船員可於必要時介入並接手運作該船舶之自動駕駛系統與功能。 等級3:未有船員隨船之遙控控制船,該船舶由岸上人員控制。 等級4:全自動化船舶,船舶之自動駕駛系統可自行做出決策並反應。 此外,MSC預計提出海事海上自駕船舶航行指引(Guidelines on MASS trials),該指引將於下一會期(MSC101)之國際海事委員會會議進行草擬。
OECD發布「促進人工智慧風險管理互通性的通用指引」研究報告經濟合作發展組織(Organisation for Economic Co-operation and Development,下稱OECD)於2023年11月公布「促進AI風險管理互通性的通用指引」(Common Guideposts To Promote Interoperability In AI Risk Management)研究報告(下稱「報告」),為2023年2月「高階AI風險管理互通框架」(High-Level AI Risk Management Interoperability Framework,下稱「互通框架」)之延伸研究。 報告中主要說明「互通框架」的四個主要步驟,並與國際主要AI風險管理框架和標準的風險管理流程進行比較分析。首先,「互通框架」的四個步驟分別為: 1. 「定義」AI風險管理範圍、環境脈絡與標準; 2. 「評估」風險的可能性與危害程度; 3. 「處理」風險,以停止、減輕或預防傷害; 4.「治理」風險管理流程,包括透過持續的監督、審查、記錄、溝通與諮詢、各參與者的角色和責任分配、建立問責制等作法,打造組織內部的風險管理文化。 其次,本報告指出,目前國際主要AI風險管理框架大致上與OECD「互通框架」的四個主要步驟一致,然因涵蓋範圍有別,框架間難免存在差異,最大差異在於「治理」功能融入框架結構的設計、其細項功能、以及術語等方面,惟此些差異並不影響各框架與OECD「互通框架」的一致性。 未來OECD也將基於上述研究,建立AI風險管理的線上互動工具,用以協助各界比較各種AI風險管理框架,並瀏覽多種風險管理的落實方法、工具和實踐方式。OECD的努力或許能促進全球AI治理的一致性,進而減輕企業的合規負擔,其後續發展值得持續追蹤觀察。