隨著加密資產與區塊鏈技術的迅速發展,美國國會眾議院於2025年5月5日提出《數位資產市場結構法案討論稿》(Digital Asset Market Structure Discussion Draft),旨在制定新法並同時修改多部美國聯邦金融法規,以建立數位資產的清晰監管框架,期促進美國數位資產市場創新、投資人保障與維護市場公平,其討論重點如下: 1. 數位資產定義與監管職權劃分:於證券法(Securities Act)與商品交易法(Commodity Exchange Act)新增大量關於數位資產的定義,並明確劃分證券交易委員會(Securities and Exchange Commission, SEC)與商品期貨交易委員會(Commodity Futures Trading Commission, CFTC)的監管界線。 2. 去中心化金融(Decentralized Finance, DeFi)、穩定幣與成熟區塊鏈系統的豁免機制:成熟區塊鏈系統、受核准的支付型穩定幣(Permitted Payment Stablecoins)與特定DeFi活動(如:驗證交易、提供用戶介面等)得排除法令適用,為區塊鏈項目提供更彈性的監管途徑。 3. 市場參與者註冊要求:規定數位商品交易所、經紀商、交易商之市場參與者,應向CFTC註冊之相關要求,遵循包含資本規範、客戶資金隔離、交易監控、報告義務等原則,以提升市場透明度和投資者保護。 4. 數位資產領域研究:要求SEC與CFTC應設立金融創新辦公室(Offices of Financial Innovation) 和創新實驗室(LabCFTC),進行多項關於數位資產領域的研究,包含DeFi、金融市場基礎設施之改善等,以提供監管機構新興技術資訊。
美國能源部發布「電力資料自願行為守則」保護消費者資料與隱私權利美國能源部(Department of Energy, DOE)所屬之電力傳輸與能源可靠度辦公室(Office of Electricity Delivery and Energy Reliability, OE)與聯邦智慧電網工作小組(Federal Smart Grid Task Force)對於由智慧電網技術所生之資料相關隱私保護問題,經過一系列包括相關業者在內的公眾意見徵集與專家學者討論後,於2015年1月12日所發布之「自願行為守則」(Voluntary Code of Conduct, VCC),係屬美國總統歐巴馬同日宣示政策,公布對於強化消費者安全、處理身分盜用(identity theft)、並促進線上隱私保護之總體策略方向中的重要部份。 「自願行為守則」的適用對象是供電業者與第三方,目的在於保護包括能源使用資訊(energy usage information)在內的電業消費者資料,並提高消費者的隱私意識與相關資料在提供與近用上所須行使的同意與控制。「自願行為守則」揭示其三大目標,包括:(一)於鼓勵創新的同時,適切地保護消費者資料的隱私與機密性,並提供可靠與不致於無法負擔之電業與能源相關服務;(二)提供消費者對其自身資料的適當近用(appropriate access);以及(三)不生違反或取代任何聯邦、州、或地方主管機關之法令或管制措施之效果。 而為求取前揭目標之達成與實現,「自願行為守則」訂有五大步驟。此五大步驟包括:(一)「消費者之注意與意識」:透過相關規定向消費者解釋資料蒐集的相關政策與程序,並聚焦於消費者的選擇與責任,藉以讓消費者了解其所必須行使之同意;(二)「消費者之選擇與同意」:透過相關規定讓消費者能為非原始目的(Secondary Purposes)——例如向數個第三方為差別化之近用授權、限制近用之期間、留存資料釋出之記錄、取消授權、以及於授權終止或不再需要相關資料時之資料處置或去識別化等——對其資料之近用進行相關管控、確認有哪些類型的資料與揭露無須消費者同意、以及要求特定資料應直接由消費者處取得;(三)「消費者資料近用」:透過相關規定允許消費者近用其資料、確認可能的錯誤、以及要求更正的相關程序,其中包括在特定情況下就非常態性要求收取費用的可能性;(四)「資料的完整性與安全性」:透過相關規定規範網路安全管理計畫,以及聚合性資料(Aggregated Data)或匿名性資料的建立方式;(五)「自發性執行、管理、與矯正」:透過相關規定對自願採納本「自願行為守則」之服務提供者的行動作出規範,以確保其遵守行為守則。「自願行為守則」雖屬自律規範,但其制定過程有包括電力業者在內之利害關係人的充分參與,並經充分之專家與公民意見徵集,被預期在公布之後將有相當程度之約束力量,並能令因智慧電網與能源資通訊技術所生之相關隱私權保護問題得到更進一步的解決。
歐洲資料保護委員會於2020年2月18日發布GDPR實施情形的報告「歐洲資料保護委員會」(European Data Protection Board, EDPB)於2020年2月18日發布GDPR實施情形的報告。報告內容主要聚焦於資料跨境傳輸機制、歐盟會員國間合作機制(含EDPB工作情形)以及中小企業法遵等其他議題。 在資料跨境傳輸機制方面,EDPB歡迎各國提出適足性認定的申請,並表達其在評估是否具有適足性時,將著重於相對方是否能使權利確實執行、矯正措施是否有效執行以及對於持續性的轉移是否有足夠保護措施等。EDPB特別建議執委會,應保守看待G20或G7等會議所進行的「資料自由流通」概念,並確保個資保護水準不會因此受到影響。 而在其他跨境傳輸機制上,EDPB建議歐盟執委會應儘速更新標準契約條款,使其能與GDPR規定相符;同時其公佈目前正在審查40個「拘束性企業規則」(Binding Cooperation Rules, BCR),預期至少半數將於2020年審結;而在驗證及行為準則方面,EDPB預期將於2020年底完成相關指引的公告。 在歐盟會員國間合作機制上,EDPB強調其將著重於探討新興技術發展如何兼顧個資保護,以使GDPR作為技術中立的架構,能在保護個資同時兼顧創新。此外,EDPB承認由於各國程序規範上的差異,使得合作面臨挑戰,其建議歐盟執委會持續觀察程序差異對於GDPR執行成效上的影響。EDPB同時認為目前各國監管機構所獲得的資源仍然不足,建議各會員國應提供監管機構更充足的資源。 在中小企業議題上,EDPB承認GDPR對中小企業帶來挑戰。對此,除已由各國監管機構提供相關支援外,EDPB也將持續投入相關支援工具的開發,以減輕中小企業的負擔。 整體而言,EDPB認為GDPR實施大體上是成功的,並能提高歐盟法律體系在全球的知名度,目前並無修改GDPR的需求。 根據GDPR第97條規定,歐盟執委會應於本年5月25日前針對跨境資料移轉、歐盟會員國間合作機制等GDPR落實情形向歐洲議會及歐盟理事會提交評估報告;並於此後每4年提交一次。EDPB此一報告係為提供執委會完成前述報告參考而做。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現