美國專利商標局(The United States Patent and Trademark Office,簡稱USPTO)與以色列專利局(The Israel Patent Office,簡稱ILPO)宣布以色列專利局將參與合作專利分類(The Cooperative Classification Patent,以下簡稱CPC)系統。以色列專利局是以色列智慧財產權審查及註冊的主管機關,主要負責智慧財產權如專利、設計、商標的審查、註冊及異議。
CPC已於2013年1月正式啟用。美國專利商標局及歐洲專利局(European Patent Office,簡稱EPO)自2010年10月共同發展一個可用於雙方不同審查程序的相容分類系統,降低工作上不必要的重複作業以強化效率。美國專利商標局局長Michelle K. Lee.表示:「合作專利分類系統了除證明美國專利商標局與以色列專利局良好的關係及合作精神外,更能夠幫助國內外申請專利的創新者與企業。」
美國專利商標局已於2016年7月提供以色列專利局CPC的相關訓練。美國專利商標局及以色列專利局預計進一步著手進行更深入的CPC相關訓練與交流事宜。以色列專利局及美國專利商標局之間的合作正持續擴展當中,並已達到以CPC為以色列專利局所收藏之專利進行分類的目標。以色列專利局局長Asa Kling表示:「隨著新系統的轉變,以色列專利局將強化審查專業及效率,並改善提供給以色列申請人的服務。」
中國大陸國務院常務會議於2014年11月19日通過其《促進科技成果轉化法修正案(草案)》,並將提請全國人大常委會審議。本次修法重視「國家制定政策,充分發揮市場在科技成果轉化中的決定性作用,建立科技成果轉化市場導向機制和利益分配機制」,其中明文規定中國大陸國務院和地方各級人民政府應當加強財政、稅收、產業、金融、政府採購等政策,以強化科技成果轉化相關活動,推動科技與經濟結合,加速科學技術進步,實現創新驅動發展。 按中國大陸《促進科技成果轉化法》係於1996年10月1日施行,歷經2007年之修訂,共計6章37條。本次通過的修正草案,增加至9章58條,其中保留和擴充現行法13條,修改合併20條,刪除4條,新增29條。本次修法加大其政府對於科技成果轉化的財政性資金投入,並可引導其他民間資金投入。此外,本次修法也放寬中國大陸高等院校和重點研究院所之科技成果的歸屬,讓其能夠順利地轉化至民間企業。例如:草案第8條規定利用財政性資金設立的科研機構、高等學校可以採取合作實施、轉讓、許可和投資等方式,向企業和其他組織轉移科技成果,並且國家鼓勵這類機構優先向中小企業轉移科技成果。 另,草案第10條亦規定科研機構、高等學校對其依法取得的科技成果,可以自主決定轉讓、許可和投資,通過協定定價、在技術市場掛牌交易等方式確定價格。相關修正大幅放寬成果運用的彈性,惟科研機構、高等學校仍應依草案第14條規定,向主管部門提交科技成果轉化情況年度報告;主管部門應當將科技成果轉化情況納入對科研機構、高等學校的考核評價體系。 本次修法還有一個重點是放寬中國大陸科研機構的研究員及大學教授從事科技成果轉化活動。例如:草案第13條規定利用財政性資金設立的科研機構、高等學校應當建立符合科技成果轉化工作特點的職稱評定、崗位管理、考核評價和工資、獎勵制度。而草案第19條第一項規定,科研機構、高等學校科技人員可以在完成本職工作的情況下兼職從事科技成果轉化活動,或者在一定期限內離職從事科技成果轉化活動。同條第二項亦規定科研機構、高等學校應當建立制度規定或者與科技人員約定兼職、離職從事科技成果轉化活動期間和期滿後的權利和義務。 綜上,本次修法除強化中國大陸研發成果之運用外,更替中國大陸大學教授打開一條前往民間服務或創業的康莊大道,影響不可謂不大,但修正草案最後尚須經中國大陸全國人大常委會審議通過,將持續觀察審議之最終結果。
談我國基因改造生物田間試驗管理規範之現況與修正方向 金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。