費城將對含糖飲品課徵稅捐

  費城市議會於105年6月17日以13票對4票通過對含糖飲料每盎司課徵1.5美分的稅,預計於106年1月正式實施。

  由於含糖飲料,容易導致肥胖及糖尿病,尤其在費城有68%的成人與41%的孩童過胖,此法案目的即在於勸阻消費者將多餘的錢用來購買這些不健康的飲料,希望能藉此幫助他們更健康。此法案通過後,估計每瓶裝兩公升的飲料及六盒裝的蘇打水各將漲價1美元左右,但是牛奶、新鮮水果或蔬菜含量50%以上的飲料則不在課稅範圍。此外,那些可以讓消費者自己添加糖的飲料,譬如咖啡,也不在課稅範圍,這意味著運動飲料、糖水、罐裝咖啡以及已添加糖的茶類都將被課稅,故有稱之為「汽水稅」。

  依據費城財政局預估,汽水稅將使市府稅收增加9,100萬美元,預計運用在學前托兒班,學校,圖書館,娛樂中心,及其他公共場所,稅收也將資助抵免販售健康飲品企業的稅收。市長 Jim Kenny 也公開支持這項稅收,並在法案通過後表示這項稅收對於該市的社區及教育系統將會帶來歷史性的貢獻。

  根據費城市新聞網(Philly.com)於16日報導:「這項稅收的徵收對象為飲料經銷商,目前尚無法統計將有多少稅收能回饋給消費者,但是估計12盎司的飲料約徵收18美分,2公升的飲料約徵收1美元,以及12瓶裝的飲料約徵收2.16美元。」。為此,飲料業者表達激烈的反對,並在法案通過後發表聲明表示將採取法律行動,並表示此項稅收並未考慮到低收入戶以及消費者對於無熱量飲料的選擇,所以是不公平的。而且這項稅收不僅影響費城人,對於所有美國人來說具有歧視性且極不受到歡迎。儘管美國飲料協會耗費了大筆的廣告費用來阻擋這項稅法的通過,費城市議會最後仍通過這項法案。

  類似法案早在2014年,加州柏克萊市就已通過。只是,費城成為全美第一個針對含糖飲料課稅的大城市,其造成之影響較為顯著,目的在於減少含糖飲料的消費。至於其他城市,包括San Francisco(舊金山) 和 Boulder, Colo.(科羅拉多波德),正在考慮相似的立法,不過至今尚未通過。

相關連結
※ 費城將對含糖飲品課徵稅捐, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7574&no=64&tp=1 (最後瀏覽日:2026/01/31)
引註此篇文章
你可能還會想看
美國政府與業者合作補助低收入戶學童低價的寬頻網路與電腦

  美國聯邦通訊委員會FCC於2011年12月13日宣布新的補助計畫,提供低價的寬頻網路及電腦給計百萬戶之低收入戶,以消除數位落差。   美國聯準會(Federal Reserve)的研究報告指出,在同樣條件下,家裡擁有電腦與寬頻網路的學生比未擁有的學生,畢業率高出6%至8%。由此可見數位發展普及化的重要性。   與新加坡和南韓高達90%的寬頻普及率相比,美國現今仍有將近三分之一的人口,亦即約一億名美國民眾無法在家使用寬頻網路,因此FCC與相關業者成立一個名為「Connect to Compete」的非營利組織(private and nonprofit sector partnership),以提高寬頻網路的普及,並改善弱勢團體與一般民眾的落差。且此一計畫所需的經費非由政府支出、全民買單,而是全數由業者負擔。   此項計畫的補助標準為,任何符合公立學校午餐補助資格的家庭即可受補助,其每個月補助9.95美元以接取寬頻網路,並可購買最高150美元的電腦、並獲得免費的數位知識訓練。   此計畫規劃自2012年春季開始實施,部份城市率先執行,並預計於2012年9月前延伸至全國各個城市實施。

調查指出:美國民眾對無線電視數位化缺乏準備

  美國審計部(Government Accountability Office, GAO)就無線電視數位化轉換一事進行調查並於2008年6月10日公布報告。該調查報告發現,雖然超過8成民眾對無線電視數位化有所認知,但亦有許多民眾認知有誤。   此外,該調查報告亦指出,收看無線電視之民眾中,45%尚未購買機上盒以因應無線電視數位化;反之並不需要為數位化進行準備之民眾(如收看有線電視或衛星電視者),卻有30%表示已經做好無線電視數位化之因應措施。在此同時,仍有部分低功率電視台將不會全面數位化,故接收無線電視之民眾可能必須備有同時可接收類比與數位訊號之設備,方能夠維持其無線電視的收視。   為鼓勵民眾購買數位機上盒,美國國家電信與資訊管理局(National Telecommunications and Information Administration, NTIA)稍早已經發出80萬張折價券,但僅有不到一半的折價券被使用,至於尚未被使用的折價券亦已逾期而無法使用。   除機上盒的準備外,隨著訊號數位化,無線電視台的訊號強度及受干擾程度也將有所改變,故無線電視台需調整電台或天線的位置,以避免部分地區民眾在數位化後無法收看清晰的影像。美國通訊傳播委員會之工程師指出,約有1%的民眾可能會有前述困擾,但截至目前為止,仍有部分電視台受限於經費問題而尚未有所因應。

歐盟「永續經濟活動分類規則」(Taxonomy Regulation)

  自從2004年聯合國發布之「Who Cares Wins」文件首次提及ESG原則,近年來國際企業不斷倡導ESG原則,即企業針對環境(Environmental)、社會(Social)、公司治理(Governance)三大面向之要求。歐盟從一開始倡導呼籲企業遵守ESG原則的階段逐漸發展為將ESG原則融入具有法律效力之規範。目前歐盟針對ESG原則擁有兩大基石,也就是2019年11月頒布的「歐盟永續財務揭露規則」(Sustainable Finance Disclosure Regulation)以及2020年6月頒布的「永續經濟活動分類規則」(Taxonomy Regulation)。   「永續經濟活動分類規則」係起源於歐盟委員會於2018年3月發布之「歐盟關於金融永續發展行動計畫」。直到2020年6月,歐洲議會與歐盟理事會終於共同公布「永續經濟活動分類規則」,該法規的目的為:為歐盟建立一個統一通用的法律框架,以分類經濟活動是否具有環境永續性。該法規規定所有金融商品都必須根據該分類規則進行分類。對於宣佈具有環境永續性之商品,皆必須揭露如何適用分類規則以及符合該分類規則;而針對不符合環境永續性之其他商品(包括那些具有ESG目標但不具備環境永續性的商品)將必須提出聲明該金融商品未符合歐盟的永續經濟活動分類規則。   而針對金融商品是否具備環境永續性,需視其是否對於下列事項作出重大貢獻。例如:減緩氣候變化;適應氣候變化;水和海洋資源的持續利用和保護;發展可循環性經濟;污染防治;生物多樣性和生態系統的保護和恢復。   「永續經濟活動分類規則」雖然於2020年6月公布,並於同年7月12日生效,但其中許多重要規定仍尚未明文,須待後續授權之施行細則規範。重要時程如下: 2020年12月31日通過就氣候相關目標的科技篩選標準之施行細則。 預計於2021年12月31日通過就所有其他環境相關目標的科技篩選標準之施行細則。 預計於2022年1月1日達成氣候相關之目標。 預計於2023年1月1日達成所有其他環境相關之目標。   隨著歐盟「歐盟永續財務揭露規則」以及「永續經濟活動分類規則」的發展,逐漸將ESG原則融入法規中,可以明顯看出國際間對於ESG原則愈發要求。我國金管會亦跟隨國際潮流,於2020年8月公布之「綠色金融行動方案2.0」提及永續金融之概念,是以,我國企業亦應著重企業自身針對ESG原則之要求,以與國際趨勢接軌。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP