費城將對含糖飲品課徵稅捐

  費城市議會於105年6月17日以13票對4票通過對含糖飲料每盎司課徵1.5美分的稅,預計於106年1月正式實施。

  由於含糖飲料,容易導致肥胖及糖尿病,尤其在費城有68%的成人與41%的孩童過胖,此法案目的即在於勸阻消費者將多餘的錢用來購買這些不健康的飲料,希望能藉此幫助他們更健康。此法案通過後,估計每瓶裝兩公升的飲料及六盒裝的蘇打水各將漲價1美元左右,但是牛奶、新鮮水果或蔬菜含量50%以上的飲料則不在課稅範圍。此外,那些可以讓消費者自己添加糖的飲料,譬如咖啡,也不在課稅範圍,這意味著運動飲料、糖水、罐裝咖啡以及已添加糖的茶類都將被課稅,故有稱之為「汽水稅」。

  依據費城財政局預估,汽水稅將使市府稅收增加9,100萬美元,預計運用在學前托兒班,學校,圖書館,娛樂中心,及其他公共場所,稅收也將資助抵免販售健康飲品企業的稅收。市長 Jim Kenny 也公開支持這項稅收,並在法案通過後表示這項稅收對於該市的社區及教育系統將會帶來歷史性的貢獻。

  根據費城市新聞網(Philly.com)於16日報導:「這項稅收的徵收對象為飲料經銷商,目前尚無法統計將有多少稅收能回饋給消費者,但是估計12盎司的飲料約徵收18美分,2公升的飲料約徵收1美元,以及12瓶裝的飲料約徵收2.16美元。」。為此,飲料業者表達激烈的反對,並在法案通過後發表聲明表示將採取法律行動,並表示此項稅收並未考慮到低收入戶以及消費者對於無熱量飲料的選擇,所以是不公平的。而且這項稅收不僅影響費城人,對於所有美國人來說具有歧視性且極不受到歡迎。儘管美國飲料協會耗費了大筆的廣告費用來阻擋這項稅法的通過,費城市議會最後仍通過這項法案。

  類似法案早在2014年,加州柏克萊市就已通過。只是,費城成為全美第一個針對含糖飲料課稅的大城市,其造成之影響較為顯著,目的在於減少含糖飲料的消費。至於其他城市,包括San Francisco(舊金山) 和 Boulder, Colo.(科羅拉多波德),正在考慮相似的立法,不過至今尚未通過。

相關連結
※ 費城將對含糖飲品課徵稅捐, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7574&no=64&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
PayPal 要求電子信箱服務提供業者封鎖未附有電子簽章的信件

  E-bay集團旗下的線上付款服務公司PayPal的代表律師Joseph E. Sullivan 於三月二十七日在倫敦舉辦的第五屆國際網路犯罪討論會議( International E-Crime Congress )中,提案要求電子信箱服務提供業者透過封鎖未附有電子簽章(Digital Signature)信件之方式,減少網路釣魚騙局(Phishing)的產生。該提案主要目的在透過電子信箱服務提供業者過濾垃圾郵件篩選系統( Spam Filters),以防堵看起來幾可亂真的網路釣魚郵件。雖然參與該國際網路犯罪討論會議的業者及政府機構並未對該提案達成共識,但是PayPal公司已和Google公司旗下的電子信箱服務Gmail達成協議,加強過濾垃圾郵件的篩選。   PayPal 是最常被詐騙集團利用偽裝郵件(Spoofing Emails)的受害公司之一,目前詐騙集團以偽裝公司郵件的技術進行網路釣魚,以騙取個人資料或帳號密碼來謀利。Paypal目前已使用數項電子簽章的安全技術,其中包括Yahoo!公司所研發的網域認證鑰匙(DomainKeys),該技術能有效地判斷寄件者的網域(Domain)是否為偽造及寄出信件是否來自偽造的網域。   目前網路釣魚的網站如雨後春筍般地出現,根據一份由國際業者及政府機構聯合提出之「反網路釣魚世界組織」(Anti-Phising World Group)報告指出,統計至今年一月份為止,全世界的詐騙網站已高達兩萬九千九百三十個。故PayPal特別對反制網路詐騙集團利用即可亂真的網路釣魚郵件,將上述提案於國際會議中提出討論 。

法國憲法委員會認定HADOPI法「三振條款」違憲

  延續本中心前幾期對於法國國會於今年5月所通過的「支持網路創作傳佈及保護法」(loi favorisant la diffusion et la protection de la création sur Internet,簡稱loi création et internet;又因該法中特別設立所謂的「網路著作散佈及權利保護高等署」(Haute Autorité pour la Diffusion des Œuvres et la Protection des Droits sur Internet,通常簡稱HADOPI)作為執行本法相關任務之獨立行政機關(autorité administrative indépendante),故本法又被稱為HADOPI法)中相關議題的報導,本次將簡要介紹法國憲法委員會(Conseil constitutionnel)於今年6月10日所作出(Décision n° 2009-580 DC du 10 juin 2009)對於該法所制定「三振條款」認定違憲之理由。   在進入憲法委員會此一決定前,須先說明HADOPI法的性質:依據本法第1條及第2條之指示,此一法律主要係修正及增補「法國智慧財產權法典」(Code de la propriété intellectuelle)之相關規定,特別是透過電子及網路傳輸之著作物(œuvres)的保護措施,並將原法典中「技術措施管理署」(l'Autorité de régulation des mesures techniques)更改為前述之「高等署」,並透過調整權限及組織內容之方式,賦予其「獨立行政機關」之地位─而特別值得注意的,則是此一獨立行政機關的9位委員中亦包括由中央行政法院(Conseil d'État)、法國最高法院(或稱「廢棄法院」;Cour de cassation )、審計法院(Cour des comptes)等指派之成員。而所謂的「三振條款」,即是本法第5條(亦為增補後之智慧財產權法典第L. 331-25〜331-27條、)中所規定之:如網路用戶於接獲兩次由HADOPI所寄發之「違反勸阻通知」(recommandation)後依然違反智慧財產權法典第L. 336-3條所賦予之義務(禁止透過網路傳送服務對於受著作權及其他相近權利保護之著作進行非法複製、再現等;最常見之形式即為非法下載)時,HADOPI即可在進行「對辯程序」(procédure contradictoire,包括事前通知、卷宗閱覽、書面陳述意見,以致若經當事人要求須進行有律師或輔佐人陪同之正式聽證程序)後,對其進行裁罰(sanctions),最長可處使用者全面中斷(suspension)一年的網路服務。   因此,在法國憲法委員會對於此一法案的審議中,其關注重點即落在對於HADOPI是否可做出此種對於網路服務使用者進行中斷服務的裁罰之上。而主要基於2項理由,憲法委員會認為此一裁罰違反憲法: 1.此一中斷服務之裁罰雖可視為係達成此一法律任務所必要之措施,但因其涉及限制人民之自由及權利,故其實具有刑罰(punition)之性質;從而依據權力分立原則,能夠享有判斷並做出此一裁罰決定之權限者,僅為法院,而非行政機關。 2.而就算強調此一裁罰係由包含司法部門成員的獨立行政機關所做成,其依然違反了憲法前言、1789年法國人權及公民權宣言中所指涉及保護的基本權利,其中包括宣言第9條的「無罪推定」,以及在本案中具備決定性之宣言第11條「思想及意見自由傳達」的權利:因為在現代民主社會發展中,使用傳播工具及網路服務已是實現此一自由所不可或缺者;從而政府中斷網路服務之裁罰行為本身,已損及人民接近使用網路服務的基本權利。   然而,儘管法國憲法委員會在其決定中否認了HADOPI法中「三振條款」的合憲性,但因除去此一部份違憲條文外,整體HADOPI法仍通過了本次的憲法考驗,且HADOPI此一機關本身之正當性亦藉此取得確定。從而,HADOPI於後續實際案例中將會如何解釋適用此一法律,顯然是日後必須持續關心的重要議題。

何謂「Society 5.0」

  日本科技政策的制定依據來自日本「科學技術基本法」,該法第九條規定,要求國家在推動科技振興發展上,政府應制訂有關科學技術振興的「科學技術基本計畫」。「科學技術基本計畫」之推動以五年為一期,最近一期為第五期(2016-2020年),該期計畫以人工智慧與資通訊技術為核心,解決各式重要社會課題,打造「超智慧社會」,並命名為「Society 5.0」。   「Society 5.0」明訂日本實現超智慧社會的政策方向,其政策重點聚焦於產業創造與社會變革,並重新架構產業與整個社會的關係,因此,除了強化產業競爭力,實現產業變革以外,「Society 5.0」也規劃解決日本近年社會課題,包括老齡化社會、勞動力不足、能源短缺與自然災害等。而在前瞻性預測上,「Society 5.0」描繪20年後未來人類將生活在為高度電腦化、智慧化環境,為實現該目標,發展物聯網、大數據分析、電腦科學與技術、人工智慧與網路安全等相關科技基礎技術研發與應用,是「Society 5.0」的核心之一。   簡單來說,「Society 5.0」追求以人為中心的新經濟社會,運用高度融合網路虛擬空間及物理現實空間的相關技術,滿足未來人類生活上的各種需求,同步解決經濟發展與社會課題,並以此建構更貼近符合個人需求之社會。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

TOP