根據歐盟條約,國家補助的行為原則上為條約所禁止,例外須經歐盟執委會核准。為使會員國得以事先瞭解哪些行為會被認為符合共同市場的精神,歐盟執委會在11月22日針對國家補助規則,通過了「研究發展與創新綱要架構」(Community framework for state aid for research and development and innovation,以下簡稱為R&D&I Framework),期能加速此類案件的審理效率。新綱要架構規定預計自2007年1月1日起開始生效適用。 根據新的綱要架構,會員國在規劃其國家補助措施之際,仍有義務通知執委會,經執委會確認或核准後,始符合歐盟相關法制。不過執委會認為,會員國在規劃國家補助措施時,如能依循綱要架構的指導說明,將可加速執委會的作業,提升審查效率。 過去僅有研發補助可例外被認為符合歐盟條約之精神,惟根據新的綱要架構,除了研發補助以外,創新補助亦是可以獲得豁免管制者。此外,綱要架構對特定有助於研究發展與創新的國家補助措施類型,提供了詳細的指導原則說明,這類國家補助措施可以帶動私人企業的研發與創新投資,有助於經濟成長與就業,因而可提升歐盟的競爭力。 R&D&I Framework同時也允許會員國視其國內發展狀況與特殊條件,設計符合該國之補助措施,前提是要符合可矯正特定市場失靈的檢視要件,且其所設計的措施可能帶來的優惠超出補助對競爭可能造成之損害。 另新綱要架構也指出阻礙研發與創新的主要市場失靈的因素如下:知識外溢(knowledge spill-overs)的效果有限、資訊不足與不對稱(imperfect and asymmetric information)、缺乏協調與網絡建構(coordination and network failures)。此外,新綱要架構中亦針對各類行的國家補助措施,逐項為會員國解說如何妥善運用,以符合補助規則(state aid rules)。這些政策措施如下: ●研發計畫(aid for R&D projects); ●技術可行性之補助研究(aid for technical feasibility studies); ●對中小型企業智慧財產權費用給予補助(aid for industrial property right costs for SMEs); ●對新創事業提供補助(aid for young innovative enterprises); ●對服務流程及組織功能創新所提供之補助(aid for process and organisational innovation in services); ●對智慧財產提供諮詢或支援服務之補助(aid for innovation advisory services and for innovation support services); ●對中小型企業因晉用高級專業人員所需之貸款提供融資的補助(aid for the loan of highly qualified personnel for SMEs); ●對創新育成事業提供的補助(aid for innovation clusters)。 新的綱要架構同時希望可以改善歐盟對國家補助的管控機制,集中資源於管理對可能破壞競爭的案件,故綱要架構對於具有高度破壞競爭與交易風險的鉅額案件,詳細說明了執委會如何進行個案評估。
日本產業競爭力強化法簡介—以新事業活動特例制度為中心 企業員工分紅改列費用,衝擊高科技產業經濟部、金管會刻正規畫將企業員工分紅改列費用,並預計自九十六年度實施,以與國際會計處理原則接軌,預料將對高科技業將造成相當之衝擊。 國際會計準則都是將分紅列為費用計算,唯獨台灣是用盈餘在分配員工分紅,為與國際會計準則接軌,將分紅列入費用應是未來趨勢,可讓財報更加透明化,新今年 4 月 28 日 立法院修正通過的商業會計法第 64 條規定,公司企業應將員工分配盈餘在財報上改列為費用,以公平市價作為計算基準,並將另採行政命令或解釋令公布入帳方式。 不過員工分紅若以市價列入費用,公司帳上賺的錢就會減少,尤其是高價股、高配股的公司影響尤甚;另一方面,新規定亦可能使這些公司趕採股票選擇權,以或提高底薪、現金分紅等方式來降低衝擊,否則若是獲利都被「員工配股」稀釋光了,財報會非常難看。因此,高科技業者則希望主管機關能放寬買回庫藏股分配員工及員工認股權證規定,以降低衝擊。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」