何謂日本「大學共同利用機關法人」

  所謂「大學共同利用機關法人」,係指日本於《國立大學法人法》(国立大学法人法)中,以設置大學共同利用機關為目的,依該法之規定設置之法人。而所謂「大學共同利用機關」,依該法之規定,則係指有關在該法所列舉之研究領域內,為促進大學學術研究之發展而設置,供大學院校所共同利用之實驗室。日本利用大學共同利用機關法人之設置,將大型研發設施設備,以及貴重文獻資料之收集及保存等功能賦予大學共同利用機關,並將其設施及設備,提供予與該大學共同利用機關進行相同研究之大學教職員等利用。

  目前登錄於日本文部科學省之大學共同利用機關法人包括了「大學共同利用機關人類文化研究機構」(大学共同利用機関法人人間文化研究機構)、「大學共同利用機關自然科學研究機構」(大学共同利用機関法人自然科学研究機構)、「大學共同利用機關高能量加速器研究機構」(大学共同利用機関法人高エネルギー加速器研究機構),以及「大學共同利用機關資訊與系統研究機構」(大学共同利用機関法人情報・システム研究機構)等四者。

本文為「經濟部產業技術司科技專案成果」

※ 何謂日本「大學共同利用機關法人」 , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7580&no=64&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
企業蓋廠房 可造林減抵二氧化碳排放量

  企業界興建廠房未來若排放的二氧化碳過高,可以透過在國內外協助造林等方式來改善。   農委會日前組成農業森林議題工作小組,積極蒐集國內外相關資料,推廣植樹造林對溫室氣體減量策略及作法,並調查出更精確的碳吸存數據,作為未來碳交易等機制所需的基本資料。其初步估算出每種植一公頃森林可淨吸收七公噸二氧化碳的減量模式。未來將可配合碳交易機制,銷售給需進行二氧化碳減量的業者,農委會已先選定台糖進行合作,未來將推廣至業者的平地造林。   農委會表示,目前的碳交易模式分為兩種,一種是進行國內外的造林,來換取本國二氧化碳的排放量,像是美、日等國,即在中國大陸廣泛種植樹木來換取更多的業者投資,或是在本國境內種植更多的林木,這種交易屬於碳交易。第二種是在本國境內進行溫室氣體的減量,再將減量超過的部分賣給其他國家,亦即清潔費的交易,也屬於廣義的碳交易行為。   為推動我國建立碳交易機制,農委會也已著手進行造林的碳吸存研究,農委會表示,未來碳交易機制建立後,業者興建廠房若排放的二氧化碳超過標準,可以透過協助國內外造林,或付出造林費用給協助造林的單位。在建立交易模式後,未來若企業界興建一座廠房所造成的二氧化碳排放量超過七公噸,即可透過支付一公頃造林費用的方式,達到平衡的效果。

NHTSA要求自動駕駛系統及L2自動駕駛輔助系統回報意外事件

  美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)2021年6月29日 「自駕車與配備等級2駕駛輔助系統車輛之意外事件回報命令(Standing General Order 2021-01:Incident Reporting for Automated Driving Systems and Level 2 Advanced Driver Assistance Systems)」,課予系統製造商與營運商意外事件回報義務,重點如下: (1)適用範圍:全美境內公共道路上發生之車輛碰撞事件,事發前30秒至事件結束期間內曾經啟用等級2駕駛輔助系統或自動駕駛系統。 (2)意外事件定義:事件中任何一方有人員死亡或送醫治療、車輛必須拖吊、安全氣囊引爆或事件涉及弱勢用路人(vulnerable road user)。 (3)回報期限:須於知悉事件後隔日立即回報,知悉後10日傳送更新資料,如後續仍有發現新事證,應於每月15號傳送更新。自駕車發生碰撞,即使無人傷亡、無車輛拖吊或安全氣囊引爆,仍需於次月15號傳送事件回報。 (4)回報方式及項目:需至NHTSA指定網站註冊帳號,線上填寫制式通報表格。項目包含車籍資料、事件時間、地點、天候、路況、傷亡及財損情形等等。   NHTSA收到的回報資料,原則上會在將個人資料去識別化後對大眾公開,惟若系統製造上或營運商主張部分資訊為商業機密,可另行向NHTSA之諮詢辦公室通報審核。如逾期未報或隱匿資訊,可處每日最高22,992美元罰金,累計最高罰金為114,954,525美元。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

OTT影音發展與著作權-以英國為例

TOP