所謂「大學共同利用機關法人」,係指日本於《國立大學法人法》(国立大学法人法)中,以設置大學共同利用機關為目的,依該法之規定設置之法人。而所謂「大學共同利用機關」,依該法之規定,則係指有關在該法所列舉之研究領域內,為促進大學學術研究之發展而設置,供大學院校所共同利用之實驗室。日本利用大學共同利用機關法人之設置,將大型研發設施設備,以及貴重文獻資料之收集及保存等功能賦予大學共同利用機關,並將其設施及設備,提供予與該大學共同利用機關進行相同研究之大學教職員等利用。
目前登錄於日本文部科學省之大學共同利用機關法人包括了「大學共同利用機關人類文化研究機構」(大学共同利用機関法人人間文化研究機構)、「大學共同利用機關自然科學研究機構」(大学共同利用機関法人自然科学研究機構)、「大學共同利用機關高能量加速器研究機構」(大学共同利用機関法人高エネルギー加速器研究機構),以及「大學共同利用機關資訊與系統研究機構」(大学共同利用機関法人情報・システム研究機構)等四者。
本文為「經濟部產業技術司科技專案成果」
澳洲聯邦法院於2023年11月16日宣告著名速食餐飲公司McD Asia Pacific LLC (後稱McDonald's)指控Hungry Jack's Pty Ltd(Burger King Corporation特許經營者,後稱Hungry Jack's)商標侵權的審判結果,確認Hungry Jack's的「BIG JACK」和「MEGA JACK」商標與McDonald's的「BIG MAC」和「MEGA MAC」商標並無誤導性之近似性,考量商標之間的外觀、發音和含義等具有顯著性差異且能夠避免對消費者造成混淆,而判決Hungry Jack's的商標使用並未侵犯McDonald's的商標權。 美國漢堡巨頭McDonald's自1971年開始在澳洲運營並銷售「BIG MAC」漢堡。這起案件始於McDonald's公司於2020年提出的指控,聲稱Hungry Jack's於該年推出並使用的「BIG JACK」和「MEGA JACK」商標與其註冊的「BIG MAC」和「MEGA MAC」商標極為相似,可能導致消費者混淆,損害其商標權益。然而,Hungry Jack's反駁了這一指控,主張其商標「BIG JACK」和「MEGA JACK」在外觀、聲音和涵義上與McDonald's的「BIG MAC」和「MEGA MAC」存在顯著差異,並提出了獨特的市場定位和行銷策略。 聯邦法院指出,McDonald's公司聲稱Hungry Jack's的「BIG JACK」和「MEGA JACK」商標使用侵犯了其商標權,但卻未能提供足夠的證據來支持這一主張。法院特別關注商標在外觀、聲音和含義上的差異,並考慮了它們在市場上的實際使用情況。雖然兩者可能在某些方面顯示出相似性,例如名稱中都包含了「BIG」與「MEGA」,但綜合考慮後,法院發現Hungry Jack's的「BIG JACK」和「MEGA JACK」商標與McDonald's的「BIG MAC」和「MEGA MAC」商標之間,包括外觀風格、字體設計和商業標識等方面存在顯著差異,並未達到引起混淆或誤導的程度。因此,基於對雙方商標相似性的詳細分析和法律準則的適用,最終判定Hungry Jack's的「BIG JACK」和「MEGA JACK」商標使用未對McDonald's商標構成侵權。 本案突顯商標管理在品牌企業發展中的關鍵性。企業應定期檢視品牌商標使用情形與辨識侵權他人或被他人侵權等潛在風險,並適合維權等管制措施以及時保護自身的商標權益,確保品牌在市場中的競爭力。 本文同步刊登於TIPS網站(https://www.tips.org.tw/)
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
歐盟執委會通過《歐洲互通法案》,以強化歐盟公共部門的跨境互通與合作歐盟執委會於2022年11月21日通過《歐洲互通法案》(Interoperable Europe Act)(下稱本法案),以強化歐盟公共部門的跨境互通與合作,加速數位化轉型。跨境互通將使歐盟及其成員國為公民與企業提供更優良的公共服務,並預計為公民節省550萬至630萬歐元的成本;為與公共行政有業務上往來的企業節省57億至192億歐元的成本。 《歐洲互通法案》為歐盟的公部門建立一套合作模式,該模式有助於建立安全的跨境資訊交換及可互通的數位共享解決方案(如開源軟體、指引、IT工具等),使彼此之間合作更有效率,進而帶動公部門創新。舉例而言,Covid-19疫情期間,互通性政策使醫院間得共享重症監護病床之數量資訊,以提供人民最即時的醫療資源。本法案架構如下: 1.結構化的歐洲合作:由歐盟成員國和區域、城市共同合作,制定跨境互通的共同戰略議程,並得到公共和私人的支持,實施互通性解決方案與進度監控。 2.強制性評估:評估跨境互通之IT系統對歐盟的影響。 3.共享和再利用解決方案:透過歐洲入口網(Interoperable Europe Portal)及社群合作的一站式平台,提供支持共享與再利用的解決方案(如開源軟體)。 4.提供創新和相關支持措施:包括監理沙盒(sandboxes)、GovTech計畫及訓練措施等。 自2010年以來,歐洲互通性框架(European Interoperability Framework, EIF)一直作為歐盟互通性政策的主要參考依據,惟始終不具有約束力。本法案將使EIF成為單一參考依據,使歐盟公共服務部門擁有互通性政策,並未來互通性合作框架將由歐洲互通委員會(Interoperable Europe Board)指導,該委員會由歐盟成員國、歐盟執委會、地區委員會(Committee of the Regions)及歐洲共同體經濟和社會委員會(European Economic and Social Committee)之代表組成。 可互通的數位公共服務對建構數位單一市場至關重要,除提升經濟效益和行政效率外,案例研究亦表明,互通性對提高政府信任可產生正面積極影響,同時本法案充分尊重現有的隱私與資料保護規則,以符合歐盟創建以人為中心的規範方法,提升個人基本權利。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。