中國大陸國務院李克強總理於2015年國務院常務會議研提「中國製造2025」政策,希望提升中國大陸製造業的發展。該政策為因應智慧聯網(Internet of Thing, IoT)的發展趨勢,以資訊化與工業化整合為主,重新發展新一代資訊技術、數控機床和機器人、航空航天裝備、海洋工程裝備及高技術船舶、先進軌道交通設備、節能與新能源汽車、電力裝備、新材料、生物醫藥及高性能醫療器材、農業機械裝備等10大領域,以強化工業基礎能力,提升技術水平和產品品質,進而推動智慧製造、綠色製造。而有別於德國所提出的工業4.0計畫,中國大陸所提出的是理念,係以開源開放、共創共享的智慧聯網推動創新思維。
本文為「經濟部產業技術司科技專案成果」
新加坡通訊及新聞部(Ministry of Communications and Information, MCI)與新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於西元2020年5月14日至28日間針對其「個人資料保護法修正草案」進行民眾意見諮詢,總共收到87份回覆。綜合民眾回覆之意見後,同年10月5日,於議會提出了「個人資料保護法修正草案」,修正重點如下: 提高外洩個人資料者罰鍰金額,至該公司在新加坡年營業額10%或1000萬美元。MCI / PDPC說明,實際上於裁罰前會綜合考量個案事實與相關因素(如:嚴重性、可歸責性、影響狀況、組織有無採取任何措施減輕個資外洩造成的影響等),作為裁罰金額的判斷依據。此外,新加坡的個人資料保護法也加入了個資外洩通知義務,但與歐盟一般資料保護規範(General Data Protection Regulation, GDPR)仍有不同,例如:其多了評估是否通知的機制。 組織基於商業改善之目的,且遵守法定條件下,得未經同意使用個人資料,此處商業改善目的包含:(1)改善或加強提供之商品或服務,或開發新的商品或服務;(2)改善或發展新的營運方式;(3)瞭解客戶喜好;(4)客製化商品或服務所需。 在公司併購、重組、出售股份以及經營權轉讓等關於公司資產處置情形,得例外無需經當事人同意而蒐集、處理與利用個人資料。 新增資料可攜權相關規定。 處罰未經授權者處理個人資料之行為。針對民眾回覆之疑慮(認為草案內容不明確),MCI / PDPC說明預計在《法規與諮詢指南》中闡明有關授權行為的細節性規定,包含採取的形式。
法國立法懲處暴力影片拍攝及網路流傳行為法國政府本月頒佈一項新法,規定除新聞從業人員外,任何人若利用攝影器材拍攝暴力行為實況,並將影片上傳、散佈於網際網路,將被視為犯罪行為,行為人可處以5年以下的有期徒刑及75,000歐元的罰金。反對者則認為此舉已嚴重侵害人民的自由權。 由內政部長Nicolas Sarkozy倡議的新法,是針對所謂的「Happy slapping」加以制定。Happy slapping即是指拍攝暴力行為實況,並將影片上傳、散佈於網際網路的行為;拍攝者原則上就是施加暴力之人,而受害者絕大多數是與拍攝者毫無關係的陌生人,以現況而言,從事Happy slapping多為青少年族群。 網路言論維護組織Ligue Odebi表示,新法將使法國成為第一個嚴重侵害表達自由及資訊自由的西方國家,同時也將阻礙人民透過攝影器材揭發警方的暴行。時下風行的影片分享網站如YouTube或法國的Dailymotion.com也將深受新法的影響,主管機關未來將有權要求業者提供網站上影片的來源資料。
新興經濟體之創新創業機制特色初探 美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。