何謂「中國製造2025」?

  中國大陸國務院李克強總理於2015年國務院常務會議研提「中國製造2025」政策,希望提升中國大陸製造業的發展。該政策為因應智慧聯網(Internet of Thing, IoT)的發展趨勢,以資訊化與工業化整合為主,重新發展新一代資訊技術、數控機床和機器人、航空航天裝備、海洋工程裝備及高技術船舶、先進軌道交通設備、節能與新能源汽車、電力裝備、新材料、生物醫藥及高性能醫療器材、農業機械裝備等10大領域,以強化工業基礎能力,提升技術水平和產品品質,進而推動智慧製造、綠色製造。而有別於德國所提出的工業4.0計畫,中國大陸所提出的是理念,係以開源開放、共創共享的智慧聯網推動創新思維。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「中國製造2025」? , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7583&no=0&tp=1 (最後瀏覽日:2025/12/17)
引註此篇文章
你可能還會想看
歐盟檢視「2005-2009年歐洲奈米科學與技術行動計畫」之執行成效

  歐盟執委會(European Commission)於今年9月初公佈了「『2005-2009年歐洲奈米科學與技術行動計畫』(Nanosciences and Nanotechnologies: An action plan for Europe 2005-2009)之期中執行報告」,文中總結了於2005至2007年有關該計劃重點領域執行之相關的活動及進程。   在該報告中,歐盟執委會也在報告中指出歐洲在奈米科學與技術發展上的一些弱點,包括:主要跨領域基礎設施的缺乏、私資金在奈米科技產業研發創新上的短缺(儘管「歐洲技術平台」積極鼓勵私人參與奈米科學與技術的投資,但目前私資金仍只佔全部資金之55%)、以及隨著歐盟會員國投資的增加,重複研究及分裂研究的風險也隨之增加。此外,奈米科技跨領域及創新的本質對於既有之研究、教育、專利授予及規範等方法也形成不少的挑戰。   另一方面,報告也指出歐洲在一些重點區域研究的整合相當成功;例如,在中小企業參與第六期研發綱領計畫(FP6) 中之奈米科學與技術計畫的部份,即由2003-2004年的18%成長至2006年的37%。此外,歐盟執委會也有計劃地來支持技術商業化的發展,像是競爭及創新計畫(Competitiveness and Innovation Programme)、財務風險分攤機制(Risk Sharing Financial Facility)、以及接收利用奈米技術為基礎之控制管路(pilot lines);未來,歐盟執委會計畫對負責任奈米科學與技術之研究採取自願性的行為規範。   下一份奈米科學與技術行動計畫之執行報告預計在2009年底公佈。

日本文化廳發布《人工智慧著作權檢核清單和指引》

日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。

歐洲法院裁決比特幣兌換免徵增值稅

  歐洲法院(Court of Justice of the European Union)日前(2015年10月22日)裁決,根據歐盟增值稅指令(Council Directive 2006/112/EC of 28 November 2006 on the common system of value added tax (OJ 11.12.2006 L 347, p. 1-118, ‘the VAT Directive’)),虛擬通貨比特幣(bitcoin)與其他傳統通貨的兌換交易免徵增值稅。   本案肇因於歐盟會員國瑞典之國民David Hedqvist欲申請線上比特幣交易平臺營利,預先向瑞典稅法委員會(Swedish Revenue Law Commission)申請先裁決定(preliminary decision),以確認比特幣與其他傳統通貨,諸如瑞典克朗,之間的兌換交易免徵增值稅。委員會表示,比特幣作為一種支付方式,其使用與合法的支付方式相似,因此比特幣與傳統通貨之間的兌換免徵增值稅。然而瑞典稅務機關(Skatteverket; the Swedish Tax Authority)對該決定不符因而上訴至瑞典最高行政法院(Högsta förvaltningsdomstolen; Supreme Administrative Court, Sweden)。法院認為本案涉及歐盟增值稅指令之解釋,因此以之為先決問題暫停訴訟而提交至歐洲法院,請求先行裁決(the reference for a preliminary ruling)。先行裁決是歐盟法院進行的程序之一,由各會員國法院請求其對歐盟法內容或效力作出解釋並拘束所有會員國,藉此保證歐盟法的法確定性及適用上的一致性。   瑞典最高行政法院認為,固然可以從歐洲法院先前判決推導出:從傳統通貨與虛擬通貨的兌換交易中,取得買賣虛擬通貨之差額作為對價,構成「提供服務以獲取對價」。有疑者,該等交易是否被歐盟增值稅指令第135條第1項各款規定所涵蓋,而屬於得免除增值稅之金融服務提供。其提交歐盟法院請求解釋之問題有二:第一,系爭交易是否屬於歐盟增值稅指令第2條第1項所定之「提供服務以獲取對價」之交易;第二,如是,該等交易是否屬於同法第135條第1項所規定得免除增值稅之交易?   歐洲法院認為,比特幣具有雙向通貨流的性質,而其除了作為支付工具之外別無意義。該虛擬通貨與傳統通貨的兌換,性質上屬於不同支付方式的交換;此外,比特幣販售者所獲得報酬等同於其買賣比特幣的價差,與交易有直接連結,屬於歐盟增值稅指令第2條第1項c款「提供服務以獲取對價」之交易。   關於第二個爭點,歐洲法院認為,歐盟增值稅指令第135條第1項e款之目的即在於避免金融交易中,決定應稅額及增值稅抵扣額的困難。更重要者,傳統通貨與虛擬通貨比特幣之相互兌換,在交易雙方都可接受比特幣作為支付方式之情況下,僅是不同支付方式之交換而屬於金融交易。若將系爭交易排除於該款適用範圍之外,將會剝奪規範目的的部份效果,因此應認定其免徵增值稅。   至於此裁決是否代表歐盟全面肯認,諸如比特幣等具有雙向通貨流性質之虛擬通貨,其作為通貨的性質?裁決中提到,就歐盟指令而言,虛擬通貨與電子錢不同,且前者並非以諸如歐元之傳統記帳單位(traditional accounting units)表示,僅是虛擬記帳單位。因此,比特幣乃至虛擬通貨於歐盟法上之定位,仍有待觀察。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

TOP