何謂專利權的「權利耗盡」原則?

  專利權人一旦將專利物售出,專利權就耗盡,專利權人不得再行使專利權,稱為權利耗盡原則(the exhaustion doctrine)或第一次銷售原則(the first sale doctrine)。舉例而言,某人取得某種保溫技術專利製造保溫杯,他可以禁止任何人製造相同專利技術的保溫杯,但是一旦他將保溫杯銷售出去,他不可以禁止買受人將保溫杯再銷售出去。

  我國關於「權利耗盡」之規定見諸於《專利法》第59條第1項第6款:

  發明專利權之效力,不及於下列各款情事:

  六、專利權人所製造或經其同意製造之專利物販賣後,使用或再販賣該物者。上述製造、販賣,不以國內為限。

  耗盡原則又可分為「國內耗盡原則」及「國際耗盡原則」。採「國內耗盡原則」者,專利品在國外銷售,他人不得未經專利權人同意而進口專利品於國內,否則將構成侵權。採「國際耗盡原則」者,專利品雖在國外銷售,專利人不得禁止再度進口轉售至國內。

  我國專利法採「國際耗盡原則」,故專利權人不得禁止專利品之平行輸入。

本文為「經濟部產業技術司科技專案成果」

※ 何謂專利權的「權利耗盡」原則? , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7585&no=16&tp=5 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

何謂「監理沙盒」?

  沙盒(Sandbox)是一個讓小孩可以安全遊玩與發揮創意的場所,在電腦科學領域,沙盒則是用來代稱一個封閉而安全的軟體測試環境。而監理沙盒(Regulatory Sandbox),則是在數位經濟時代,為因應各種新興科技與新商業模式的出現,解決現行法規與新興科技的落差,故透過設計一個風險可控管的實驗場域,提供給各種新興科技的新創業者測試其產品、服務以及商業模式的環境。   在監理沙盒當中,業者將暫時享有法規與相關責任的豁免,減低法規遵循風險,以使業者能夠盡可能地測試其技術、服務或商業模式。透過在測試過程中與監管者(通常為政府主管機關)的密切互動合作,針對在測試過程中所發現或產生的技術、監管或法規問題,一同找出可行的解決方案,並作為未來主管機關與立法者,修改或制定新興科技監管法規的方向跟參考。   監理沙盒一詞源自英國在2014年因應Fintech浪潮所推動的金融科技創新計畫,而類似的概念也出現在日本2014年修正產業競爭力強化法當中的灰色地帶消除制度與企業實證特例制度。我國則於2017年通過金融科技發展與創新實驗條例,為我國監理沙盒的首例,2018年我國持續推動世界首創的無人載具科技創新實驗條例立法,為我國建構更有利於產業創新的法制環境。

德國車輛及其系統新技術研發計畫

  德國經濟與能源部於2017年11月公布車輛及其系統新技術補助計畫期中報告,補助的研究計畫聚焦於自動駕駛技術及創新車輛技術兩大主軸。   在自動駕駛研究中,著重於創新的感測器和執行系統、高精準度定位、車聯網間資訊快速,安全和可靠的傳輸、設備之間的協作、資料融合和處理的新方法、人機協作、合適的測試程序和驗證方法、電動汽車之自動駕駛功能的具體解決方案。其中以2016年1月啟動的PEGASUS研究項目最受關注,該計畫係為開發高度自動化駕駛的測試方法奠定基礎,特別是在時速達130公里/小時的高速公路上。   在汽車創新技術的研究發展上,著重於公路和鐵路運輸如何降低能源消耗和溫室氣體排放,包括透過交通工具輕量化以提高能源效率、改善空氣動力學之特性、減少整體傳動系統的摩擦阻力、創新的驅動技術。另外,也特別注重蒐集和利用在車輛操作期間產生的資料,例如在於操作和駕駛策略的設計,維護和修理,或車輛於交通中相互影響作用。   本報告簡介相關高度實用性技術研究計畫,同時展望未來研究領域,以面對現今產業數位化的潮流和能源效率及氣候保護的發展的新挑戰,因此,資通訊技術、自動控制技術以及乾淨動力來源技術,將會是未來交通領域研究的重點。

日本〈塑膠資源循環戰略〉及新發展

  日本環境省因應海洋垃圾、全球暖化等課題於2019年5月31日發表〈塑膠資源循環戰略〉(プラスチック資源循環戦略),在重點戰略之一的減量(Reduce)方面,提出「塑膠袋收費制」措施,擬於2020年7月1日正式上路,經濟產業省則從同年1月6日開始設置可服務企業與消費者的諮詢窗口,也將與相關主管機關合作,致力於塑膠袋收費制內容之公告說明及自行攜帶購物袋之宣導等減少一次性塑膠製容器包裝及產品的使用,並透過尋找其他替代的容器包裝及產品等方式,達到一次性塑膠排放量在2030年前減少25%之目標。   因此經濟產業省產業構造審議會下的塑膠袋收費制檢討工作小組,及環境省中央環境審議會循環型社會部會下的塑膠袋收費制小委員會,自2019年9月至同年12月間召開4次聯合會議,並經過公眾意見程序後,修正《容器包裝再生利用法》(容器包装リサイクル法)的相關省令,並公布〈塑膠製購物袋收費制實施指導方針〉(プラスチック製買物袋有料化実施ガイドライン),供各零售業者參考,以確保塑膠袋收費制的順利施行。

TOP