商標權之意義本在於增進商品及服務的識別程度,促進消費者對特定品牌商品或服務的購買慾望,而商標權之立法目的在於維護市場公平競爭,促進工商企業正常發展;是以在社會快速變遷發展之下,各國亦逐漸開放商標之型態,從傳統之文字、圖型,乃至於聲音商標,發展至動態圖、全像圖,以及氣味商標等等。
以氣味申請商標之案例始於1990年美國的櫻桃香味機油(CHERRY SCENT, Registration)案;歐盟則是在1993年通過歐盟商標規則(European Community Trademark Regulation, CMTR)之後,方開放以氣味聲請為歐盟商標;歐盟成員國以英國為例,則是於1994年修正商標法(Trade-marks Act),接軌CMTR之規範後,於1996年首次通過玫瑰花香輪胎與啤酒味飛鏢遊戲之商標申請。
我國則是於2011年6月修正通過之商標法中,開放任何足以識別商品、服務來源之標示,皆可註冊商標,其中即包括氣味在內。至今(2016年8月)已有4項氣味商標取得商標權。
此外,於美國主導之國際經貿協定:環太平洋夥伴協定 (Trans-Pacific Partnership, TPP)中,亦要求其各締約方應盡最大努力接受氣味商標之註冊。是以可知,開放氣味型態之商標註冊已為國際趨勢,可以預期未來將會有更多國家開放氣味商標之註冊申請。
本文為「經濟部產業技術司科技專案成果」
日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
加拿大競爭局發布人工智慧與競爭諮詢報告加拿大競爭局(Competition Bureau Canada,下稱競爭局)為更了解人工智慧如何影響或促進競爭,於2025年1月27日發布人工智慧與競爭諮詢報告(Consultation on Artificial Intelligence and Competition)。競爭局於意見徵詢期間獲得來自學術界、法律界、產業協會及大型科技公司的意見書。 諮詢報告彙整意見書內容並列出以下重點: 1. 人工智慧從資料輸入、基礎模型至終端產品或服務各階段皆在快速發展,可以為市場帶來新的競爭或阻礙競爭,人工智慧可能影響競爭原因包含資源依賴、資料控制及市場參進障礙等等。 2. 人工智慧領域中大規模投資是技術成長的重要關鍵,大型企業可藉由市場力量減少競爭或進行創新,少數大型企業因擁有較高的投資能力及數據資料專屬性,在基礎架構層(運行人工智慧所需的工具,如人工智慧晶片、雲端運算及超級電腦等)中佔有極高的市場份額,但也有部分意見認為人工智慧市場仍蓬勃發展中,亦有企業或學術機構未過度依賴專有數據但仍能開發出產品。 3. 人工智慧可能導致反競爭行為,企業雖可透過垂直整合來降低成本並提高效率,但可能會減少現行市場內部競爭,或透過具有人工智慧的演算法進行定價,達到操縱市場價格的行為,現行反壟斷法未來是否可以解決此一問題還有待觀察。 藉由諮詢的過程,競爭局更能掌握人工智慧發展、也了解公眾對話的重要性,意見書亦有助於該局未來提出兼顧人工智慧發展及促進市場競爭之政策措施。 我國公平交易委員會已於112年5月成立AI專案小組,負責掌握國際間人工智慧相關競爭議題的趨勢與發展,並針對現行人工智慧發展與競爭法執法研提政策配套措施,我國公平交易委員會與加拿大競爭局對於人工智慧與市場競爭議題之後續動態,值得持續追蹤。
美國國會議員提出「網路盾」草案美國民主黨議員Ed Markey於2019年10月22日提出2019年「網路盾」草案(Cyber Shield Act of 2019),將設立委員會以建立美國物聯網網路安全標準。 雖由參議員MarkWarner所提出之2019年物聯網網路安全促進法(Internet of Things Cybersecurity Improvement Act of 2019)已通過並施行,惟該法僅適用於聯邦政府機構之設備採購。而「網路盾」草案之目的則係設立委員會並建立美國物聯網設備認證標章。依據該草案第3條,於該法通過並經總統簽署後90天內,美國國務卿必須建立網路盾諮詢委員會,該委員會之任務為擬定並建立美國網路盾標章。 另依據該草案第4條,物聯網產品之自願性認證程序與認證標章,內容必須符合特定產業之網路安全與資料保護標準。該標章應為數位標章,並標示於產品之上,且可劃分數個等級,以表彰其符合產業所需求之網路安全與資料安全等級。而針對標章之內容,該法要求美國國務卿於法律通過90天內應建立諮詢相關利益團體之程序,以確保其充分符合產業需求與利益。美國國務卿與各聯邦主管機關亦須合作以持續維護網路安全與資料安全標章之運作,且確保獲得該標章之產品,其資安與資料保護品質均優於未受認證之產品。
日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)