何謂德國「EXIST補助計畫」?

  德國在2000年以後便將聯邦政府補助的其中一個方向集中在鼓勵科技創業,主要推動機關為聯邦教育暨研究部(Bundesministerium für Bildung und Forschung, BMBF)與聯邦經濟暨能源部(Bundesministerium für Wirtschaft und Energie, BMWi)。其中BMWi的EXIST計畫訴求建立一個科技創業有善的環境,並分三項子計畫運作:EXIST創業文化計畫(EXIST-Gründungskultur),EXIST創業補助計畫(EXIST-Gründerstipendium),EXIST研發成果移轉計畫(EXIST-Forschungstransfer)。

  其中,EXIST創業文化計畫著重於在學研機構內塑造創業文化,誘發學研機構創業潛力與企業家性格;EXIST創業計畫則是鎖定學研機構內的個人(科學家、研究生、大學生),希望透過對這些個人的生活補助,使其商業發想可化為營運計畫書(Businessplan),進而開發成為商品或服務;EXIST研發成果計畫則是透過經費補助,鼓勵學研機構內的研究團隊利用設立衍生公司方式運用研發成果,在創業前的籌備階段與公司設立初期導入專業團隊,協助評估相關的創業理念、經營模式、財務評估與資金運用等規劃是否妥適,使公司創立的籌備更為妥善且禁得起市場考驗。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 何謂德國「EXIST補助計畫」? , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7592&no=64&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
歐盟「未來工廠」發展計畫

  歐盟執行委員會依展望2020 (Horizon 2020)於2016年4月14日至15日召開未來工廠公私夥伴合作 (FoF cPPP)研討會,並展示目前資助的研究與創新成果,透過本計畫將協助歐盟內製造業,特別是中小企業,將資通訊及關鍵技術與整個工廠生產鏈結合,達到整體製造業升級。   計劃具體目標如下:(1)以資通訊技術為基礎的解決方案導入製造業生產過程,增加產品獨特性、多樣化、可大規模生產,及保有高度靈活性,以迅速反應瞬息萬變的市場。(2)縮短進入市場的研發製程,提升產品質量,並透過數位化設計、成型、模擬實作及預測分析,提升工作效率。(3)改善整合生產環境的人為因素。(4)透過現代資通訊基礎的生產技術使得資源、材料、能源更有持續性。(5)促進並強化製造領域的共同平台及其生態系統。(6)從獨特的地理位置創建虛擬價值鏈,從而善用優秀人才的潛力。   我國為整合新創能量,以創造製造業下一波成長動能,今年亦陸續公布「智慧機械產業推動方案」與「數位國家‧創新經濟發展方案」,以具高效率、高品質、高彈性等特徵之智慧生產線,透過雲端及網路與消費者快速連結,打造下世代工廠與聯網製造服務體系。

何謂「孤兒著作」?

  「孤兒著作」係指仍在著作權保護期間,但是著作權人不明知著作。依著作權法第10條規定,著作人於著作完成時享有著作權,而著作權之保護期間依著作權法第30條第1項存續於著作權人之生存其間及其死亡後之50年。   在網路普及資訊流通快速之現代,經過不斷的轉載,許多著作權人不明,但是仍受著作權法保護,所謂之「孤兒著作」在市面上不斷流通。此時若與利用孤兒著作,但是不知道著作權人是誰,無法取得授權之情形下,要怎麼辦才不會觸法?   此時依文化創意發展法第24條,想要利用孤兒著作之人,得在盡力尋找著作權人未果後(不知著作權人為何或是著作權人聯繫資訊不明知情形),向智財局說明無法取得授權之原因,並提存一定金額,取得智財局之許可授權後,於許可範圍內利用該著作。又須提存之金額應與一般著作經自由磋商所應支付合理之使用報酬相當。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

Google挑戰法國最高行政法院對被遺忘權之看法

  2016年3月法國個人資料保護主管機關「國家資訊自由委員會」(Commission Nationale de l'Informatique et des Libertés, CNIL)要求Google等搜尋引擎公司,刪除網路搜尋所出現之歐洲公民姓名。此舉參考2014年歐洲法院(European Court of Justice)對於Mario Costeja González一案(C 131/12)所作裁決,Google公司和Google西班牙公司須遵守西班牙資料保護局(Agencia Española de Protección de Datos, AEPD)要求,移除出現原告姓名之搜尋結果。Google表示不服,並上訴法國最高行政法院(Conseil d'État)。   於本案中Google提出兩點主張:第一,CNIL對於被遺忘權(right to be forgotten)適用範圍過大,聲稱所搜尋到之姓名等資訊,屬於事實或來自新聞報導和政府網站之合法公開網站資訊,認為CNIL將隔絕原本在法國可為其他人所知之合法資訊;第二,Google主張向來遵守各國個人資料保護政策,將遵照CNIL要求,但僅限刪除在法國網域內之歐洲公民姓名,無法及於全球網域,除非法國政策已為全歐盟或全球所適用,不然法國個人資料保護審查制度不能延伸至其他國家。   對於網路公民權利推廣不遺餘力之「電子前線基金會」(Electronic Frontier Foundation, EFF)認為CNIL對法國公民資料保護之特別要求,將對Google造成損害。

TOP