日本A-STEP計畫係指研發成果最適展開支援事業計畫,由國立研究開發法人科學技術振興機構負責辦理,主要目的在於兼顧大學研究成果之學術價值及實用性,同時透過產學合作推展大學的研發成果,帶動創新產生。計畫針對產業技術瓶頸,為民間企業不易涉入的高風險研發領域,由科學技術振興機構中介民間企業與公私立大學、公私立技術學院、公立研究機構、國立研究開發法人、公益法人共同執行產學研種子研發計畫,再依據不同的目的、技術性質規劃不同類型的產學研合作研究計畫進行資助。
研究成果最適展開支援事業有兩個特色:單一申請窗口、以及採取接續模式分段申請。其流程為,大學研究人員向國立研究開發法人科學技術振興機構申請研究成果最適展開支援事業,在研究開發階段中,若被補助的種子計畫在結束後,想持續進行研究,可申請另一階段-委託開發實用挑戰之計畫補助,國立研究開發法人科學技術振興機構將透過外界研究人員對計畫進行審核,決定是否延長計畫以及延長的期程。一般研究開發可區分為三階段:可能性驗證、實用性驗證與實證驗證,故研究人員在申請A-STEP計畫時,研究計畫中需提及所申請計畫的現在發展情況與條件及想申請何種項目,以利國立研究開發法人科學技術振興機構決定後續的處理方式。
本文為「經濟部產業技術司科技專案成果」
我國關於個人資料去識別化實務發展 財團法人資訊工業策進會科技法律研究所 2019年6月4日 壹、我國關於個人資料去識別化實務發展歷程 我國關於個資去識別化實務發展,依據我國個資法第1條立法目的在個資之隱私保護與加值利用之間尋求平衡,實務上爭議在於達到合理利用目的之個資處理,參酌法務部103年11月17日法律字第10303513040號函說明「個人資料,運用各種技術予以去識別化,而依其呈現方式已無從直接或間接識別該特定個人者,即非屬個人資料,自非個資法之適用範圍」,在保護個人隱私之前提下,資料於必要時應進行去識別化操作,確保特定個人無論直接或間接皆無從被識別;還得參酌關於衛生福利部健保署資料庫案,健保署將其所保有之個人就醫健保資料,加密後提供予國衛院建立健保研究資料庫,引發當事人重大利益爭議,終審判決(最高行政法院106年判字第54號判決)被告(即今衛福部)勝訴,法院認為去識別化係以「完全切斷資料內容與特定主體間之連結線索」程度為判準,該案之資料收受者(本案中即為衛福部)掌握還原資料與主體間連結之能力,與健保署去識別化標準不符。但法院同時強調去識別化之功能與作用,在於確保社會大眾無法從資料內容輕易推知該資料所屬主體,並有提到關於再識別之風險評估,然而應採行何種標準,並未於法院判決明確說明。 我國政府為因應巨量資料應用潮流,推動個資合理利用,行政院以推動開放資料為目標,104年7月重大政策推動會議決議,請經濟部標檢局研析相關規範(如CNS 29191),邀請相關政府機關及驗證機構開會討論,確定「個人資料去識別化」驗證標準規範,並由財政部財政資訊中心率先進行去識別化驗證;並以我國與國際標準(ISO)調和之國家標準CNS 29100及CNS 29191,同時採用作為個資去識別化驗證標準。財政部財政資訊中心於104年11月完成導航案例,第二波示範案例則由內政部及衛生福利部(105年12月通過)接續辦理。 經濟部標準檢驗局目前不僅將ISO/IEC 29100:2011「資訊技術-安全技術-隱私權框架」(Information technology – Security techniques – Privacy framework)、ISO/IEC 29191:2012「資訊技術-安全技術-部分匿名及部分去連結鑑別之要求事項」(Information technology – Security techniques – Requirements for partially anonymous, partially unlinkable authentication),轉換為國家標準CNS 29100及CNS 29191,並據此制訂「個人資料去識別化過程驗證要求及控制措施」,提供個資去識別化之隱私框架,使組織、技術及程序等各層面得整體應用隱私權保護,並於標準公報(107年第24期)徵求新標準之意見至今年2月,草案編號為1071013「資訊技術-安全技術-個人可識別資訊去識別化過程管理系統-要求事項」(Management systems of personal identifiable information deidentification processes – Requirements),主要規定個資去識別化過程管理系統(personal information deidentification process management system, PIDIPMS)之要求事項,提供維護並改進個人資訊去識別化過程及良好實務作法之框架,並適用於所有擬管理其所建立之個資去識別化過程的組織。 貳、個人資料去識別化過程驗證要求及控制措施重點說明 由於前述說明之草案編號1071013去識別化國家標準仍在審議階段,因此以下以現行「個人資料去識別化過程驗證要求及控制措施」(以下簡稱控制措施)[1]說明。 去識別化係以個資整體生命週期為保護基礎,評估資料利用之風險,包括隱私權政策、隱私風險管理、隱私保護原則、去識別化過程、重新識別評鑑等程序,分別對應控制措施之五個章節[2]。控制措施旨在使組織能建立個資去識別化過程管理系統,以管理對其所控制之個人可識別資訊(personal identifiable information, PII)進行去識別化之過程。再就控制措施對應個人資料保護法(下稱個資法)說明如下:首先,組織應先確定去識別化需求為何,究係對「個資之蒐集或處理」或「為特定目的外之利用」(對應個資法第19條第1項第4、5款)接著,對應重點在於「適當安全維護措施」,依據個資法施行細則第12條第1項規定,公務機關或非公務機關為防止個資被竊取、竄改、毀損、滅失或洩漏,採取技術上及組織上之措施;而依據個資法施行細則第12條第2項規定,適當安全維護措施得包括11款事項,並以與所欲達成之個資保護目的間,具有適當比例為原則。以下簡要說明控制措施五大章節對應個資法: 一、隱私權政策 涉及PII處理之組織的高階管理階層,應依營運要求及相關法律與法規,建立隱私權政策,提供隱私權保護之管理指導方針及支持。對應個資法施行細則第12條第2項第5款適當安全維護措施事項「個人資料蒐集、處理及利用之內部管理程序」,即為涉及個資生命週期為保護基礎之管理程序,從蒐集、處理到利用為原則性規範,以建構個資去識別化過程管理系統。 二、PII隱私風險管理過程 組織應定期執行廣泛之PII風險管理活動並發展與其隱私保護有關的風險剖繪。直接對應規範即為個資法施行細則第12條第2項第3款「個人資料之風險評估及管理機制」。 三、PII之隱私權原則 組織蒐集、處理、利用PII應符合之11項原則,包含「同意及選擇原則」、「目的適法性及規定原則」、「蒐集限制原則」、「資料極小化原則」、「利用、保留及揭露限制」、「準確性及品質原則」、「公開、透通性及告知原則」、「個人參與及存取原則」、「可歸責性原則」、「資訊安全原則」,以及「隱私遵循原則」。以上原則涵蓋個資法施行細則第12條第2項之11款事項。 四、PII去識別化過程 組織應建立有效且周延之PII去識別化過程的治理結構、標準作業程序、非預期揭露備妥災難復原計畫,且組織之高階管理階層應監督及審查PII去識別化過程之治理的安排。個資法施行細則第17條所謂「無從識別特定當事人」定義,係指個資以代碼、匿名、隱藏部分資料或其他方式,無從辨識該特定個人者,組織於進行去識別化處理時,應依需求、風險評估等確認注意去識別化程度。 五、重新識別PII之要求 此章節為選驗項目,需具體依據組織去識別化需求,是否需要重新識別而決定是否適用;若選擇適用,則保留重新識別可能性,應回歸個資法規定保護個資。 參、小結 國際上目前無個資去識別化驗證標準及驗證作法可資遵循,因此現階段控制措施,係以個資整體生命週期為保護基礎,評估資料利用之風險,使組織能建立個資去識別化過程管理系統,以管理對其所控制之個人可識別資訊進行去識別化之過程,透過與個資法對照個資法施行細則第12條規定之安全維護措施之11款事項,內化為我國業者因應資料保護與資料去識別化管理制度。 控制措施預計於今年下半年發展為國家標準,遵循個資法與施行細則,以及CNS 29100、CNS 29191之國家標準,參照國際上相關指引與實務作法,於技術上建立驗證標準規範供產業遵循。由於國家標準無強制性,業者視需要評估導入,仍建議進行巨量資料應用等資料經濟創新業務,應重視處理個資之適法性,建立當事人得以信賴機制,將有助於產業資料應用之創新,並透過檢視資料利用目的之合理性與必要性,作為資料合理利用之判斷,是為去識別化治理之關鍵環節。 [1] 參酌財團法人電子檢驗中心,個人資料去識別化過程驗證,https://www.etc.org.tw/%E9%A9%97%E8%AD%89%E6%9C%8D%E5%8B%99/%E5%80%8B%E4%BA%BA%E8%B3%87%E6%96%99%E5%8E%BB%E8%AD%98%E5%88%A5%E5%8C%96%E9%81%8E%E7%A8%8B%E9%A9%97%E8%AD%89.aspx(最後瀏覽日:2019/6/4) 財團法人電子檢驗中心網站所公告之「個人資料去識別化過程自評表_v1」包含控制措施原則、要求事項與控制措施具體內容,該網站並未公告「個人資料去識別化過程驗證要求及控制措施」,故以下整理係以自評表為準。 [2] 分別為「隱私權政策」、「PII隱私風險管理過程」、「PII之隱私權原則」、「PII去識別化過程」、「重新識別PII之要求」。
歐盟正式通過資料治理法(DGA),歐盟資料共享發展跨出一大步歐盟理事會(Council of the European Union)於2022年5月16日正式通過了資料治理法(Data Governance Act, 簡稱DGA),本法是歐盟執委會(European Commission)於2020年11月提案,經過一年多的意見徵詢與協商,歐盟議會(European Parliament)於今(2022)年4月6日以501票贊成通過,隨後由歐盟理事會通過公布,本法預計將於2023年8月正式生效。 DGA包含幾大面向,除了針對資料中介服務(data intermediation)、資料利他主義(data altruism)、歐盟資料創新委員會(European Data Innovation Board)等機制建立的規定外,在第二章特別針對公部門所持有之特定類別資料的再利用(reuse)進行規定。當公部門持有的資料涉及第三方受特定法律保護的權利時(如涉及第三方之商業機密、智慧財產、個資等),本法規定公部門只要符合特定條件下可將此類資料提供外界申請利用;若為提供符合歐盟整體利益的服務且具有正當理由和必要性的例外情況下,得授予申請對象專有權(exclusive rights),但授權期間不得超過12個月;歐盟應以相關技術確保所提供資料之隱私和機密性。 再者,各會員國應指定現有機構或創建一個新機構擔任提供上述資料類型的單一資訊點(Single Information Point, SIP),以電子方式公開透明地提供資料清單,包含可申請利用之資料的來源及相關描述(至少包含資料格式、檔案大小、再利用的條件等),以提供中小企業、新創企業便利、可信的資料查詢管道。此外,歐盟執委會應建立一個單一近用點(Single Access Point, SAP),提供一個可搜尋公部門資料的電子登記機制(a searchable electronic register of public-sector data),讓使用者得直接搜尋各會員國單一資訊點(SIP)中所提供的資料及相關資訊。 DGA是歐盟2020年2月發布歐盟資料戰略(European Data Strategy)後的第一個立法,歐盟希望透過本法建立一套能提升資料可利用性和促進公私部門間資料共享的機制,以創造歐盟數位經濟的更高價值。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
反恐任務 愛爾蘭擬成立DNA資料庫自美國911事件後,世界各國無不重新檢視自己國內現行實施的保安制度,愛爾蘭政府最近宣布將建立一個有限的DNA資料庫的計畫,以協助對抗重大犯罪事件。該資料庫的資料儲存範圍,將包括永久保留被判處超過五年徒刑的任何重大犯罪嫌犯的DNA檔案,以及任何疑似觸及重大犯罪的嫌犯檔案,後者的檔案僅暫時保存,一旦當事人沒有遭到起訴或稍後無罪獲釋,檔案即被移除或銷毀。 我國內政部原訂七月一日起換發身分證需強制捺指紋才可領證,其目的之一也是為了要遏止治安不斷惡化的情況,不過遭到人權團體抗議強制捺印指紋為侵犯隱私之行為。大法官會議解釋則認為,內政部以戶籍法第八條規定強制全民捺指紋領身分證,並以此建立指紋資料庫,以及以個人資料保護法作為指紋可用在個案犯罪偵防的根據,兩項做法均不適當,因此以釋字第603號解釋宣告換發身分證需強制捺指紋的作法違憲。 愛爾蘭政府若要建立一有限的DNA資料庫,其立法目的與執行、管理都須有周密設計,並符合保障人權的憲法原則,否則該DNA資料庫也將會存有侵犯人權的潛在風險。
歐盟執委會發布指引以因應《人工智慧法》「禁止的人工智慧行為」條文實施歐盟執委會於2025年2月4日發布「關於禁止的人工智慧行為指引」(Commission Guidelines on Prohibited Artificial Intelligence Practices)(下稱「指引」)」,以因應歐盟《人工智慧法》(AI Act,下稱AIA)第5條關於「禁止的人工智慧行為」之規定。該規定自2月2日起正式實施,惟其內容僅臚列禁止行為而未深入闡釋其內涵,執委會特別制定本指引以避免產生歧義及混淆。 第5條明文禁止使用人工智慧系統進行有害行為,包括:利用潛意識技術或利用特定個人或群體之弱點進行有害操縱或欺騙行為、實施社會評分機制、進行個人犯罪風險預測、執行無特定目標之臉部影像蒐集、進行情緒識別分析、實施生物特徵分類、以及為執法目的而部署即時遠端生物特徵識別系統等。是以,指引就各禁止事項分別闡述其立法理由、禁止行為之具體內涵、構成要件、以及得以豁免適用之特定情形,並示例說明,具體詮釋條文規定。 此外,根據AIA規定,前述禁令僅適用於已在歐盟境內「投放市場」、「投入使用」或「使用」之人工智慧系統,惟對於「使用」一詞,並未予以明確定義。指引中特別闡明「使用」之定義,將其廣義解釋為涵蓋「系統投放市場或投入使用後,在其生命週期任何時刻的使用或部署。」 指引中亦指出,高風險AI系統的特定使用情境亦可能符合第5條的禁止要件,因而構成禁止行為,反之亦然。因此,AIA第5條宜與第6條關於高風險AI系統的規定交互參照應用。 AIA自通過後,如何進行條文內容解釋以及法律遵循義務成為各界持續討論之議題,本指引可提升AIA規範之明確性,有助於該法之落實。