美國白宮在2016年6月16日舉行「提升智慧電力市場再生能源與儲能行動方案高峰會」,並於會後公布「聯邦政府與私部門提升智慧電力市場再生能源與儲能現況簡報」(Federal and Private Sector Actions on Scaling Renewable Energy and Storage with Smart Markets)等全美在此領域所採的各項措施。
白宮指出:目前透過新的行政部門行動措施與33州政府及私部門的承諾,除了將加速再生能源與儲能的電網整合,並預計在未來5年增加1.3GW的儲能採購與部署。
在聯邦政府方面,相關的行動包括白宮經濟顧問委員會(White House Council of Economic Advisers)就整合再生能源的電網技術與經濟面向發佈新報告、聯邦政府承諾進行增加聯邦與軍事基地的儲能與微電網的計畫,並提供偏鄉社群微電網建置資金,與能源部(DOE)促進能源資料的使用與標準化。
在私部門方面,相關的行動則有16家電業在至少8州公布未來5年的儲能採購與部署目標、投資人承諾在能源儲存領域投入1億3千萬美元資金,和電力公司與開發商承諾部署智慧熱水器、智慧電表,與需量反應計畫。
在上述措施中,加州公共事業委員會(California Public Utilities Commission, CPUC)承諾為更可靠的電網建立管制架構,並使用戶可從不同的分散型能源資源選擇,同時促進智慧電表與電網運作情形資料的蒐集、分析與散佈。
而綠色按鈕聯盟(Green Button Alliance)則宣布將以示範計畫提供聚集、匿名的能源使用資訊供研究與公益使用。目前規劃此示範計畫將由參與的電業透過智慧電表部署所提供的匿名能源使用資訊建立資料庫。
面對科學界越來越無法抵擋的複製人浪潮,聯合國二月十八日召開一項特別會議,並表決通過聲明,呼籲各國政府禁止各種形式的複製人研究,包括用於研究人類幹細胞的技術等。不過項聲明並不具強制力。 聯合國法律委員會是以七十一票贊成,三十五票反對,四十三票棄權下,通過這項由宏都拉斯和美國布希政府提出的支持禁止複製人的聲明,委員會通過後交給聯合國大會,由一百九十一個會員國成員最後決定。回教國家已經表明,聯合國大會表決時將棄權,因為聯合國內部並無法達成共識﹔而目前各自有人類幹細胞研究的英國,比利時和新加坡都反對這項聲明,並稱聲明內容不會影響他們的「醫療性幹細胞研究」。 會中支持和反對陣營的最主要爭議核心,在於醫療性複製人類的研究,這類研究必須複製人類胚胎取得幹細胞,實驗結束後銷毀。支持這項研究技術的科學家認為,人類幹細胞研究為許多至今仍無法治療的疾病帶來新希望,例如阿茲海默症,各種癌症,糖尿病和脊椎傷害患者,影響約一億人﹔但是如美國,加拿大等反對國家則認為,這種研究不論是哪一種目的,都是在剝奪利用一個人的生命。聯合國成員在二○○一年起討論制定一項具約束力的全球性公約,禁止複製人,不過各國歧見擴大,一直無法達成共識。義大利因此提議制定不具強制力的宣言,呼籲各國各自立法「禁止任何透過複製程序產生人類生命的企圖,以及任何意圖達成此一目的的研究。」不過,宏都拉斯將此建議擴大,提議聯合國聲明「禁止所有形式的複製人行為。」
行政院審查通過「食品衛生管理法」及「健康食品管理法」修正草案「食品衛生管理法」及「健康食品管理法」修正草案已於94年11月30日經行政院第2968次院會審查通過,將於近期進一步送立法院審議。未來只要有食品遭檢出含有害人體健康的物質,或標示不清,都一律得先下架禁賣並封存。而食品廣告誇大不實或宣稱具有療效部分,也在這次修法中加重其相關罰則。 本次修法重點為: 一、廣告管理:延長傳播業者保存委託刊播廣告者資料之期間,由原本2個月修正為6個月(食品衛生管理法修正條文第十九條、健康食品管理法修正條文第十五條)。 二、提高罰鍰額度: 1.加重宣稱療效健康食品業者之行政處分,提高其罰鍰額度,由原本6萬元以上30萬元以下,修正為20萬元以上100萬元以下,並規定一年內再違反者,得廢止其營業或工廠登記證照。(健康食品管理法修正條文第二十四條) 2.對於影響民眾飲食衛生安全較鉅之違法情節,提高罰鍰額度,將部分原本3萬元以上15萬元以下或4萬元以上20萬元以下,提高為6萬元以上30萬元以下(食品衛生管理法修正條文第三十一條及第三十三條)。 三、違規業者加重行政處分:違規標示產品 除應通知限期回收改正,進一步明定於改正前不得繼續販賣(食品衛生管理法修正條文第二十九條)。 四、擴大地方主管機關得命暫停作業並將物品封存之範疇(食品衛生管理法修正條文第二十四條)。
德國法院針對GEMA控告YouTube判決出爐德國漢堡地方法院4月20日針對GEMA控告YouTube一案作出判決(Az. 310 O 461/10),確認影片平台業者著作權法上之義務,預料將為兩造授權金協議過程的僵局,造成一定影響。 本案原告GEMA主張被告YouTube應採取措施,阻止其享有權利之12個影音檔案,繼續透過YouTube平台在德國境內流通。而本案的爭點即在於:對於YouTube平台上由網友上傳、且涉嫌侵害著作權的影片內容,被告移除及防止侵害的責任範圍究竟多大。 本案法院認為,因被告本身並非將違法內容上傳之行為人,無法以德國電信服務法(TMG)第7條規定,課予其侵權行為人責任(Täterhaftung)。但被告因提供、經營平台,對著作權侵害有所「貢獻」,故法院依TMG第10條規定,認定被告YouTube僅在知悉特定侵權情事的情況下,才負擔移除或阻斷網路接取的義務;而當平台業者收到著作權侵害的通知後,便須立即阻斷涉嫌侵權的影片,並採取合理的措施,防止侵權行為再發生。然而,法院也強調,平台業者只負擔「合理」的檢查及管控義務,故平台業者毋須逐一檢視所有已上傳的影片。 按本案法院見解,所謂合理的措施,包括YouTube須利用其所研發的「內容識別系統Content-ID」,防止特定的侵權內容再次發生。另YouTube也負擔加裝文字過濾軟體的義務,以杜絕含有特定標題或關鍵字之影片上傳至平台。 據了解,雙方均發表聲明對此判決結果表示肯定。除原告得以主張其所享有的著作權外,YouTube也認為法院明確界定影視平台業者應作為的義務範圍。但對原告GEMA來說,重點在如何透過訴訟程序對YouTube施壓,重啟授權金的談判。兩造後續對長久來授權金計算公式的歧異將如何達成共識,值得關注。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現