日本政府於2016年6月2日經內閣議決「再興戰略2016」,為提升國民健康、提高平均壽命,以「世界最先進的健康國家」大篇幅宣布未來政策。其中,在「醫療、長照等領域徹底ICT化」方面之具體新措施如下:
(1)醫療等領域中導入ID制度
日本厚生勞動省於2015年11月18日召開第10次「醫療等領域利用識別號碼制度之研究會」(医療等分野における番号制度の活用等に関する研究会),並於次月公布相關研究報告書,其內容包含導入「醫療保險線上資格審查」以及「醫療ID制度」,上述制度預計自2018年開始階段性運用,並於2020年正式實施,因此,本年度工作目標設定為,著手勾勒具體之應用系統機制,並針對實務面相關議題進行討論,自明年開始落實系統開發,整體而言,日本現階段最重要的目標就是促使醫療領域徹底數位化及標準化。
(2)透過巨量資料之利用,增進相關領域之創新
「次世代醫療ICT基礎設施協議會」(次世代医療ICT基盤協議会策定)將延續2016年3月由其所策定之「醫療領域資料利用計畫」(「医療等分野データ利活用プログラム」,意即加強各資料庫(例如醫療資訊資料庫MID-NET)之交流並擴大相關應用。
此外,在現行法規範下,為達成促進醫療領域資訊利用、醫藥相關研發之目標,應成立「代理機關(暫稱)」,以便於擴大收集醫療、檢驗等數據資料,並妥善管理與去識別化,日本政府於「再興戰略2016」中將此機關之設置列為次世代醫療ICT基礎設施協議會之重要工作項目,期望透過協議會對相關制度之討論,能在明年訂定出具體的法律措施。
(3)個人醫療和健康資訊之綜合利用
日本政府期望透過不同終端設備收集關於醫療、健康等資料,並鼓勵民間依此開發新市場,但在此之前,政府必須先行建構一個能良性發展的環境。首先,為實現針對個人需求量身打造的「個別化健康服務」,保險業者、握有病歷的機構、健檢中心及可穿戴式終端設備等,得經當事人同意後收集、分析其日常健康資訊,該「個別化健康服務」之實證計畫將於本年度啟動,由地區中小企業開始。
為強化醫療保險業者去整合運用相關資源並應用於預防、健康醫學上,政府機關應訂定一些獎勵措施,鼓勵業者將ICT技術活用於預防、健康醫學領域上。
此外,今年度「次世代醫療ICT基礎設施協議會」還有一項重要的工作項目,即建立可記錄患者所有就醫過程資訊之系統(Peronal Health Recaord,簡稱PHR),讓相關醫療資料得以流通運用。同時,日本政府希望能在2018年達成「地區性醫療情報聯結網路」,並普及到全國各地,這麼做的目的在於,過往因為醫療資訊不流通,以及重症照護上的斷層,使身心障礙者往往難以離開長期利用的醫療環境,新政策希望讓這些患者無論遷居何處,在全國各地皆能安心接受醫療服務,而不受限於地區限制。
美國眾議院今年(2013)12月5日通過創新法案(The Innovation Act of 2013,H.R. 3309),主要目的在於填補美國發明法(Leahy-Smith America Invents Act,AIA)對於遏止專利濫訟之不足。創新法案中達成立法目標之核心手段主要有以下五個方向。 1.限縮提訴要件,要求提起專利訴訟,必須說明遭侵權之商品以及遭侵權之情形,特別是針對專利侵權之因果關係的說明,以不實施專利主體(Non-practice Patents Entity,NPE)不生產製造專利產品之特性遏止其專利濫訟。 2.訴訟費用的轉移,將相關成本轉移至敗訴方,並加諸合理之賠償費用。直接以訴訟成本之轉嫁來影響訴訟意願,然而此舉是否造成真正之專利所有者保護自身專利之障礙仍須觀察個案。 3.延遲證據開示,避免證據開示過早影響判決之結果。 4.要求專利所有者持續針對所有之專利進行資訊更新,使專利所有權透明化,以揭露NPE藉由空殼公司進行濫訟之行為。 5.創新法案另試圖使專利產品之實際製造商代替消費者面對專利侵權時相關產品之訴訟。 而眾議院通過創新法案的同時,參議院也有相類似的平行立法提案,稱為專利透明化與改進法案(The Patent Transparency and Improvement Act of 2013,S. 1720)。比較參眾兩院之法案版本後,可以發現兩者立法目的以及採取的手段均類似,主要都集中在於資訊的透明化以及訴訟成本的轉嫁,試圖藉由除去專利訴訟有利可圖的情形遏止專利濫訟的現象,但是參議院版本之法案是否真的能夠達到遏止專利濫訟之情形受到各界更多的爭議。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
日本全球首度針對物聯網技術創立新的專利分類近年來,物聯網(Internet of Things, IOT)技術快速發展,隨著大勢所趨掀起一波專利申請熱潮。申請量增加的同時,亦代表相關技術的智財權使用者對於該領域的專利資訊需求大幅增加。然而,目前全球還沒有與此領域相關的專利分類系統協助大眾搜尋這些技術資訊。 有鑑於此,日本特許廳(Japan Patent Office,簡稱JPO)在今(2016)年11月14日針對物聯網技術領域全球首創新的專利分類ZIT。自2017年起,將可透過JPO的J-PlatPat系統利用此專利分類,檢索及分析物聯網相關的專利資訊。此專利分類能夠協助專利申請者更有效地檢索相關先前技術,亦能同時讓相關業者及專業人士了解當前物聯網技術的發展趨勢。 JPO不僅針對日本當地,亦努力與其他專利局合作。在世界五大專利局(簡稱IP5):包含歐洲專利局(European Patent Office,簡稱EPO)、韓國智慧財產局(Korean Intellectual Property Office,簡稱KIPO)、中國大陸知識產權局(the State Intellectual Property Office of the People’s Republic of China,簡稱SIPO)、美國專利商標局(The United States Patent and Trademark Office,簡稱USPTO)及JPO的專利局首長會議,以及世界智慧財產權組織(World Intellectual Property Organization,簡稱WIPO)的國際會議上,JPO積極鼓勵各國多加使用ZIT專利分類。 因應日本政府今年提出第四次産業革命戰略,瞄準三大核心技術其中亦包含了物聯網技術,JPO現在首創新的專利分類ZIT,更能提升物聯網的相關技術研發,為物聯網產業劃下重要里程碑。