美國最高法院就蘋果與三星間關於設計專利侵權一案進行審理

  美國加州聯邦法院於2015年12月裁定三星侵犯iPhone設計專利,需向蘋果賠償5.48億美元。三星不服因此上訴至美國最高法院,美國最高法院於今年(2016)10月11日開庭審理韓國三星電子公司的專利侵權糾紛案,針對加州聯邦法院授予蘋果的賠償金是否過多一事進行審議。

  智慧手機是包含多個部件、技術之複雜產品,設計專利持有者不能因為某項專利侵權而要求獲得整個產品之全部利潤。本件上訴案中,三星聲稱「被認定侵權的功能僅占三星電子手機價值的1%,蘋果卻得到了三星電子100%的利潤」,認為加州聯邦法院針對侵犯蘋果的設計專利涉及手機的外觀(如圓角長方形機身、用戶介面),判定需用侵權產品的全部銷售利潤來支付蘋果3.99億美元之設計侵權賠償金並不公平。蘋果則表示,蘋果手機的成功與其獨特的外觀有直接關係,三星故意抄襲蘋果的創新設計並因此大幅提升產品銷量,因此有權要求侵權產品之全部利潤。

  三星和蘋果間的專利糾紛訴訟已持續多年,自2011年起,已發生多起關於智慧型手機、平板在技術、用戶介面及風格上之抄襲糾紛。目前兩家公司在本案庭審中仍各執己見,而美國最高法院預計將於明年(2017)6月作出判決。

相關連結
※ 美國最高法院就蘋果與三星間關於設計專利侵權一案進行審理, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7631&no=64&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
英國競爭與市場管理局發布人才競爭指引

英國競爭與市場管理局(Competition and Markets Authority,簡稱CMA)於2025年9月9日發布人才競爭指引(Competing for Talent),說明企業在勞動市場中採取何種行為可能會違反競爭法。 指引中指出三項於勞動市場中可能會違反競爭法的行為,分別是: (1)禁止挖角(no poach):指企業同意不向其他企業招募現職員工,或同意在未經他企業許可前,接觸或招募該公司的現職員工,此一行為可能違反競爭法;惟須考量與禁止招募條款(no-solicitation clauses)之差異,禁止招募條款係為避免企業離職員工或合作企業於一定期間內直接或間接招募企業員工、客戶或其餘合作夥伴,禁止招募條款於合理必要範圍內之限制並不違反競爭法。 (2)固定薪資(wage fixing):此為CMA近期的執法重點,指二個以上之企業就薪資及員工福利達成協議,包含薪資調漲幅度、設定薪資上限,或是依產業工會建議薪資來固定員工薪資等等。 (3)交換競爭敏感資訊(exchange of competitively sensitive information):係指競爭對手間不應交換競爭敏感資訊,包含定價方式、商業策略等等,即使接收方未根據獲得的敏感資訊採取對應措施,提供資訊方仍被認定為違反競爭法。 上述協議不以正式或是書面之方式達成一致為必要,企業間的社交聯繫、非正式的互動或君子協議(gentleman’s agreements)均屬之,且皆可能違反競爭法,違法之企業可能會面臨全球營業總額10%的罰款、禁止參與政府採購、面臨私人損害賠償訴訟等結果。 近年勞動市場與競爭法之議題正逐漸受到重視,除了英國,美國、歐盟、日本等亦發布相關指引文件,或對違反競爭法之企業進行調查或裁罰。我國公平交易委員會目前尚未針對此議題提出明確的論述,企業於勞動市場中限制競爭之行為,究竟如何適用公平交易法或屬勞動法範疇,仍有待相關部會進一步討論,相關國際發展趨勢仍可持續觀察作為我國公平交易法制發展後續參考方向。

美國「人工智慧應用管制指引」

  美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。

英國正式提出人類組織與胚胎法草案

  英國可算是對人類胚胎研究最積極的國家之一,目前其胚胎相關研究係根據「人類受精與胚胎學法」(Human Fertilisation and Embryology Act 1990,HF&E Act)及「人類受精與胚胎學規則」(Human Fertilisation and Embryology (Research Purposes) Regulations 2001,Research Purposes Regulations)之規定,並授權「人類受精與胚胎學管理局」(Human Fertilisation and Embryology Authority,HFEA)加以管理。   然面對胚胎研究日益多樣化,英國健康部於今(2007)年5月正式提出「人類組織與胚胎法草案」(Human Tissues and Embryos (Draft)Bill,以下簡稱草案),期能加強現有管理體系並促進相關技術之發展,而草案特別針對體外受精(in vitro fertilization)及胚胎研究之相關規定,作一徹底檢視及翻修。   進一步觀察,胚胎儲存、胚胎篩選、精卵捐贈及主管機關均屬草案規定範圍,另近來於英國國內討論熱烈的人類動物混合胚胎議題,亦於草案中有所規定,草案准許三種類型之人類動物混合胚胎得以被製造,分別是:將動物細胞注入至人類胚胎中、將動物DNA注入至人類胚胎中及將人類細胞核植入動物卵子中等。至於人類精卵與動物精卵之結合,則是被禁止之行為。   草案後續將送交國會專門委員會審查,但由於草案涉及極為爭議的人類動物混合胚胎議題,社會輿論的壓力及保守派議員會產生何種影響,值得持續關注。

國際保險公司探討奈米保險機制可行性

  特定奈米科技經歷研發階段過後,所獲致的成熟技術產品,要邁向市場商業化階段,能否真正成功,取決於市場消費大眾能否具有信心願意採用。而奈米科技由於新興發展存有未知之不確定風險,所以有論者開始規劃研擬,引進責任保險機制,藉由責任風險分散之功能,期望解決面對不確定風險時,能夠足以妥適因應。   依據國際最具份量之瑞士再保公司(Swiss Re) 對於奈米科技之保險機制,2008年出版「奈米科技:微小物質,未知風險(Nanotechnology--Small Matter, Many Unknowns:The Insurers' Perspective)」研究報告 ,其中明文點出,保險業(Insurance Industry)之核心業務即為移轉風險(Transfer of Risk),由保險公司(Insurer)經過精算程序後收取一定費用,適時移轉相關風險,並產生填補功能。   然而,保險業對於可藉由保險機制所分散之風險,亦有其極限範圍,如果超過以下三原則者,則會被認為超出可承擔風險範圍,屬保險業無力去承擔者,所以保險機制之引進將不具可行性: (1)風險發生之可能機率與發生嚴重程度,現行實務沒有可行方式能加以評估者。 (2)當危害產生時,所造成之影響為同時擴及太多公司、太多產業領域、或太廣的地理區域者。 (3)有可能產生的巨大危害事件,已超過私領域保險業所能承受之範圍者。   此外,為確保未來得以永續經營,保險公司對於願意承保之可保險性(Insurability)端視對於以下各因素性質之評估: (1)可加以評估性(Accessibility):對於所產生之損害係屬可評估,並得以加以計量化、允許訂出價格者(be Quantifiable to Allow Pricing)。 (2)無可事先安排者(Randomness):對於保險事故之發生,必須是不可預測者,並且其所發生必須獨立於被保險者本身主觀意志(the Will of the Insured)之外。 (3)風險相互團體性(Mutuality):相關保險者必須基於同時參加並組成共同團體性,藉以達到分擔分散相關風險性。 (4)經濟上可行性(Economic Feasibility):必須使私人保險公司藉由收取適宜保費,便得以支付對等之賠償費用,可以確保業務經營得以永續持續下去。   綜上所述,可以明瞭並非所有風險,保險公司均願意承保而能達到分散風險者,對於風險必須是可預測性並有承保價值,保險公司本身具有商業機制,依據精算原則確定願意承保之費用,此才可謂實務上可行,對於奈米科技引進保險機制之衡量思考,也當是如此。

TOP