所謂中國大陸《網路預約出租汽車經營管理暫行辦法》,是指中國大陸針對目前在各國都陸續發生法律爭議的網路出租車叫車平臺,例如源自美國加州舊金山的優步(Uber),或是中國大陸當地發展的滴滴打車服務,所制定的專法規範,以期解決網路出租車叫車平臺所可能產生的法律爭議。
類似Uber的服務型態,之所以會產生法律爭議,主要是因為汽車運輸載客的商業行為,在各國都會受到汽車運輸業的相關管制,以保障運輸服務乘客安全及消費權益。以德國為例,就曾因此對Uber進行行政處罰,並進一步於司法判決中要求Uber司機需取得營運牌照。
也因此中國大陸交通運輸部在2016年7月14日通過,並於2016年11月1日起施行《網路預約出租汽車經營管理暫行辦法》,該規定將網路預約出租汽車服務定義為「預約出租客運」,平台業者需負擔車輛營運、收益分配與司機管理等等的任務,且其地位為中國大陸汽車運輸載客法規中的客運服務承運人,需負擔相當責任,而並非如Uber等所主張的其僅為仲介平台,不具客運服務承運人之地位。
此外,該辦法亦要求網路預約出租汽車之司機應滿足無交通肇事犯罪紀錄、無危險駕駛犯罪紀錄、無吸毒紀錄、無飲酒後駕駛紀錄、無暴力犯罪紀錄等條件。
本文為「經濟部產業技術司科技專案成果」
美國白宮科技政策辦公室(Science and Technology Policy, OSTP)在2020年1月6日公布了「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」,提出人工智慧(AI)監管的十項原則,此份指南以聯邦機構備忘錄(Memorandum for the Heads of Executive Departments and Agencies)的形式呈現,要求政府機關未來在起草AI監管相關法案時,必須遵守這些原則。此舉是根據美國總統川普在去(2019)年所簽署的行政命令「美國AI倡議」(American AI Initiative)所啟動的AI國家戰略之一,旨在防止過度監管,以免扼殺AI創新發展,並且提倡「可信賴AI」。 這十項原則分別為:公眾對AI的信任;公眾參與;科學誠信與資訊品質;風險評估與管理;效益與成本分析;靈活性;公平與非歧視;揭露與透明;安全保障;跨部門協調。旨在實現三個目標: 一、增加公眾參與:政府機關在AI規範制定過程中,應提供公眾參與之機會。 二、限制監管範圍:任何AI監管法規實施前,應進行成本效益分析,且機關間應溝通合作,建立靈活的監管框架,避免重複規範導致限制監管範圍擴大。 三、推廣可信賴的AI:應考慮公平性、非歧視性、透明性、安全性之要求,促進可信賴的AI。 這份指南在發佈後有60天公開評論期,之後將正式公布實施。白宮表示,這是全球第一份AI監管指南,以確保自由、人權、民主等價值。
大倫敦政府推動城市資料市集,期尋求資料利用及隱私保護間之平衡,建立民眾對資料市集之信賴資料利用之層面越來越廣,且無論是基於商業或公益目的,產生越來越多難題。穿戴式裝置及物聯網的發展,亦使得資料之蒐集利用及界線等問題更顯其重要性。有鑑於此,大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「倫敦城市資料策略」(London City Data Strategy),積極推動「城市資料市集」(City Data Market),期將倫敦打造成世界首屈一指的智慧城市。 增加大眾對資料市集之信賴並減少疑慮乃「倫敦城市資料策略」之一環,近年在英國有一系列新法上路,除新的歐盟資料保護規範(GDPR)外,英國國內有關「開放銀行」(open banking)之新規範,以及已有能源及電信公司參與之MiData initiative等,上述機制均為促使個人更容易掌握其個資被利用之狀況。 大倫敦政府亦推動「倫敦資料交易」(London Data Exchange),大眾可利用此一機制掌握其個資流向。其中有關建置新的數位符號(digital tokens of proof),使民眾未來可利用此等符號證明符合特定資格,例如在道路受檢時,毋須拿出駕照說明個人姓名、地址、出生年月日等資料,利用該等符號,便可判定符合駕駛年齡。 近期,大倫敦政府透過資料科學合作夥伴(Data Science Partnership)推動資料科學倫理架構(Framework for Data Science Ethics),著手研究民眾對資料交易新機制的反應,試圖在資料利用與法律和道德問題間尋求平衡。
世界智慧財產權組織(WIPO)發布《2021年全球創新指數報告》世界智慧財產權組織(WIPO)於2021年9月20日發布了第14版的《全球創新指數報告》(Global Innovation Index, GII),本報告以81項指標對全球132個經濟體的創新生態系進行評鑑,前十名分別為瑞士、瑞典、美國、英國、韓國、荷蘭、芬蘭、新加坡、丹麥、德國,亞洲表現最好的是韓國。 本報告指出,在COVID-19疫情期間,世界各國政府和企業對創新的投資並未減少,且健康相關產業、綠色相關產業、數位科技相關產業最受到矚目。 此外,今年的報告中新增了一個專章「全球創新追蹤」(global innovation tracker),其中針對科學與創新投資(science and innovation investments)這一組指標進一步的分析發現,2020年全球在科學出版數量增加了7.6%、在研發支出增加了8.5%、在創業投資增加了5.8%、在國際專利申請數量增加了3.5%。與2019年相比,國際專利申請數量以中國大陸增加16%最多,美國、韓國的申請數量也都穩定成長,但日本與多數歐洲國家的申請數量皆屬下降;而專利申請的技術領域以醫療技術、製藥技術、生物技術為主。整體而言,雖然疫情為全球經濟帶來嚴峻挑戰,但各國對於科學與創新的投資經費仍持續增加。
美國地方法院裁定產品專利資訊標示不實之罰金計算以該產品之最高售價為基礎繼美國聯邦巡迴上訴法院於2009年底於The Forest Group Inc v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292條中關於不實專利標示(false patent marking)的罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎,並將原案發回地方法院(the U.S. District Court for the Southern District of Texas)重審後,地方法院於今年4月27日裁定基於專利法第292條具懲罰性之本質,針對標示錯誤或標示無效專利號之產品之罰金應以該產品之最高售價而非被告基於販售該產品所獲得之利潤或經濟利益來計算。 於此案中,The Forest Group產品之售價介於美金 $103至 $180元間,法院因而裁定處以The Forest Group每一標示錯誤專利資訊產品 $180元之罰金。 Atlas 法官提到藉由將標示不實專利資訊者處以該產品之最高售價之罰金,The Forest Group所需賠償之罰金將超過其藉由販售該產品所獲取之利益,達到第292條遏制之目的。 預計此案之判決將對其他地方法院於處理類似案件之判定產生引響,尤其對那些將錯誤專利資訊標示在大量產品上的被告而言。此外,正如各界所預料,繼去年聯邦巡迴上訴法院對第292條提出罰金計算基礎之解釋後,提起相關訴訟案件之數量已大量提升,至今已累積約140案。另,聯邦巡迴上訴法院亦剛於6月10日於Pequignot v. Solo Cup 一案中針對標示過期專利、舉證責任等與第292條相關之爭議做出解釋,後續效應直得企業持續關注。