美國的數位服務推動小組18F(Digital service delivery,18F),因辦公室位於華盛頓特區F街18號而得名。2014年3月由總務署(General Service Administration,GSA)成立,透過業界與政府合作模式,幫助政府機關改善流程及增進效率,其所輔導的專案計畫將實際轉變政府機關提供數位服務及科技產品之運作模式,以達跨部會、機關之整合,並使對公眾的數位服務更便於使用。
18F為幫助美國各機關建造、購買及分享現代數位服務以提升政府的使用者經驗,提供了五項服務:(一)就已存的數位規格(digital component)打造訂製化產品(custom products);(二)以創新方式購買科技,使各政府能夠獲得更快、更好及產生更好結果的IT服務。詳細服務內容有代寫委外服務建議書(Request For Proposal,RFP)、開發市場利用現代技術購買IT服務、購買開放源代碼(open source code)以提升專案計畫;(三)替政府建造一安全、可擴展的工具與平台,其能更加符合需求並能夠持續為改善以達需求;(四)協助成為數位化組織,不只是增加組織內部數位化能力,更要形成數位習慣並最終促使組織文化改變;(五)透過討論會、設計工作室、指南及文件工作平台,提供及分享18F實際運用的相關現代數位化服務技術,使政府機關能自行複製及使用。
近期知名成果案例發生於加州。在加州,每一年的孩童福利服務案件管理系統超過2萬名社工利用為追蹤管理超過50萬件虐待及忽視兒童案件,若使用過時系統產生風險將無法估計,故加州政府、美國衛生與人群服務部(Department of Health and Human Services,DHHS)即利用了前述相關服務,與18F共同重新設計該系統的採購流程。從2015年11月至2016年10月,合作建立新系統不到1年的時間,導入了契約文件之簡化、模組化(modular)契約之合併、敏捷性開發(agile development)、使用者中心之設計及開放源(open source)之實踐。
首先,代寫委外服務建議書,18F於其中展示如何將專案計畫為模組化,亦即別於過往採購的傳統模式,非尋找單一開發商去建置整個已預設需求的系統,透過分離的方式,找尋不同開發商以更符合實際需求,亦能避免時間金錢的浪費,降低遲約或違約之風險。再者,聚集可能符合資格的供應商,邀請眾供應商建造以開放源代碼(open source code)方式的原型(prototype)。透過此一過程的激盪,18F從中協助評估所提出的原型、技術等,以了解供應商如何提出及是否符合使用者中心的設計。同時也能減少政府與供應商雙方的招標時間及行政成本。最後,為使加州政府機關能自行複製及使用相關現代數位化服務技術,18F示範敏捷軟體開發(agile software development)專案計畫。從中加州政府不僅瞭解如何為風險評估,且思考相關技術部門於專案計畫中的角色定位。
面臨現代化數位服務,在美國,聯邦與州政府都面臨極大挑戰。18F介入發展新模式,更能達實際需求,亦為內化之協助,利於政府自行發展其他數位服務。18F與加州政府合作之案例,或許能為國家發展數位服務運作之借鏡。
2019年7月1日,日本經產省依據《外匯及對外貿易法(以下簡稱外匯法)》,對於產品技術的輸出與輸入進行適當之進出口管制,要求日本國內向南韓進行輸出之行為,必須通過嚴格的出口管制審查。日本經產省表示,進出口管制制度係建構在國際信賴關係的基石之上,近年來有相關產品技術輸出南韓管制不當之案例,已造成日韓兩國間信賴關係嚴重損害(例如二戰強徵勞動力的訴訟案件爭議,以及日本提供的材料可能從南韓非法轉運至北韓、被轉為軍事用途之風險等),故提出兩項政策以為反制,包括將南韓從白色國家名單移除,及提升對南韓出口管制審查標準等,具體說明如下。 1.修正日本對南韓之輸出貿易管理列表 基於《外匯法》第48條,擬修正外匯法之政令《輸出貿易管理令》附件三類別表,將南韓從日本安全保障、友好貿易夥伴的「白色國家」列表中刪除,透過監管改革嚴格審查對南韓的出口管制制度。 2.針對向南韓出口之電子原料實施嚴格管制審查與核發特定出口許可證 自2019年7月4日起,針對日本向南韓出口的三項半導體關鍵電子原料,含氟聚醯亞胺(Fluorine Polyimide)、光阻劑(Resist)、蝕刻氣體(Eatching Gas)以及轉讓相關連的製造技術等,均被排除於綜合出口許可證制度範圍外,須額外單獨申請特定出口許可證並進行出口審查。 針對日本管制措施,南韓產業通商資源部(Ministry of Trade, Industry and Energy, MOTIE)表示強烈抗議,認為日本在未提供任何具體證據的情況下逕行對南韓實施出口管制,並將南韓從白色國家名單中刪除,已違反WTO自由與公平貿易原則(Free and Fair Trade),構成貿易壁壘與歧視性差別待遇,嚴重威脅日韓經濟夥伴關係,恐將引發兩國企業及全球產業供應鏈動盪,對自由貿易造成負面影響。南韓政府已強烈要求日本取消對於出口管制的不公平措施,撤銷將南韓從白色國家名單移除之《輸出貿易管理令》修正案,同時積極尋求聯合國安全理事會介入調查。
歐盟執委會通過數位歐洲計畫2023~2024年工作計畫為促進歐洲的數位轉型,歐盟執委會(European Commission)在2023年3月24日於通過數位歐洲計畫(Digital Europe programme, DEP)下的2023~2024年工作計畫,預計投入12.84億歐元於「主要數位歐洲計畫工作計畫」(Main DEP programme)(下稱「主要工作計畫」)及「網路安全工作計畫」(Cybersecurity Work Programme),以延續之前投入之成果,並加強歐盟對抗網路威脅的集體韌性。 實際上歐盟於2018年即提出第一個數位歐洲計畫,並透過數位單一市場策略(Digital Single Market strategy)嘗試建立符合數位特性的監管框架,藉以提高歐盟的國際競爭力,發展及加強歐洲的數位能力。數位歐洲計畫包括五個重點領域:超級電腦(Supercomputers)、人工智慧(Artificial intelligence, AI)、網路安全及信任(Cybersecurity and trust)、數位技能(Digital skills),以及確保數位技術在經濟及社會中被廣泛使用。 前述所說的主要工作計畫,其投入資金為9.095億歐元,重要工作有三。首先,藉由關注氣候和環境保護技術、數據資料、人工智慧、雲端、網路安全、先進數位技能及部署此些技術之最佳方法,並加強歐盟的關鍵數位能力。第二,關注數位公共服務,強調具跨境互操作性(cross-border interoperability)的公部門解決方案(例如歐洲數位身份)。此外,也將透過歐洲數位媒體觀測站(European Digital Media Observatory, EDMO)打擊假訊息,並以InvestEU計畫下的策略數位技術投資平台,重點支持中小及新創企業關注網路安全。 其次,網路安全工作計畫的投入資金為3.75億歐元,由歐洲網路安全能力中心(European Cybersecurity Competence Centre)負責執行,將支援建立國家和跨境安全操作中心的能力,以打造最先進的威脅檢測及網路事件分析生態系統。網路安全工作計畫還將資助產業(特別是中小及新創企業)遵守網路安全法規要求的項目,特別是網路及資訊系統安全指令(Directive on Security of Network and Information Systems, NIS2)或網路韌性法案(Cyber Resilience Act)所要求的內容。 歐盟已在加強數位公共服務、數位技能及網路安全等方面投入許多資源,其中網路安全、資安威脅和打擊假消息等議題因其不受地區限制而更受到注目,未來仍待持續關注此些議題之發展。
解析雲端運算有關認驗證機制與資安標準發展解析雲端運算有關認驗證機制與資安標準發展 科技法律研究所 2013年12月04日 壹、前言 2013上半年度報載「新北市成為全球首個雲端安全認證之政府機構」[1],新北市政府獲得國際組織雲端安全聯盟( Cloud Security Alliance, CSA )評定為全球第一個通過「雲端安全開放式認證架構」之政府機構,獲頒「2013雲端安全耀星獎」(2013 Cloud Security STAR Award),該獎項一向是頒發給在雲端運用與安全上具有重要貢獻及示範作用之國際企業,今年度除了頒發給旗下擁有年營業額高達1200億台幣「淘寶網」的阿里巴巴集團外,首度將獎項頒發給政府組織。究竟何謂雲端認證,其背景、精神與機制運作為何?本文以雲端運算相關資訊安全標準的推動為主題,並介紹幾個具有指標性的驗證機制,以使讀者能瞭解雲端運算環境中的資安議題及相關機制的運作。 資訊安全向來是雲端運算服務中最重要的議題之一,各國推展雲端運算產業之際,會以提出指引或指導原則方式作為參考基準,讓產業有相關的資訊安全依循標準。另一方面,相關的產業團體也會進行促成資訊安全標準形成的活動,直至資訊安全相關作法或基準的討論成熟之後,則可能研提至國際組織討論制定相關標準。 貳、雲端運算資訊安全之控制依循 雲端運算的資訊安全風險,可從政策與組織、技術與法律層面來觀察[2],涉及層面相當廣泛,包括雲端使用者實質控制能力的弱化、雲端服務資訊格式與平台未互通所導致的閉鎖效應(Lock-in)、以及雲端服務提供者內部控管不善…等,都是可能發生的實質資安問題 。 在雲端運算產業甫推動之初,各先進國以提出指引的方式,作為產業輔導的基礎,並強化使用者對雲端運算的基本認知,並以「分析雲端運算特色及特有風險」及「尋求適於雲端運算的資訊安全標準」為重心。 一、ENISA「資訊安全確保架構」[3] 歐盟網路與資訊安全機關(European Network and Information Security Agency, ENISA)於2009年提出「資訊安全確保架構」,以ISO 27001/2與BS25999標準、及最佳實務運作原則為參考基準,參考之依據主要是與雲端運算服務提供者及受委託第三方(Third party outsourcers)有關之控制項。其後也會再參考其他的標準如SP800-53,試圖提出更完善的資訊安全確保架構。 值得注意的是,其對於雲端服務提供者與使用者之間的法律上的責任分配(Division of Liability)有詳細說明:在資訊內容合法性部分,尤其是在資訊內容有無取得合法授權,應由載入或輸入資訊的使用者全權負責;而雲端服務提供者得依法律規定主張責任免除。而當法律課與保護特定資訊的義務時,例如個人資料保護相關規範,基本上應由使用者與服務提供者分別對其可得控制部分,進行適當的謹慎性調查(Due Diligence, DD)[4]。 雲端環境中服務提供者與使用者雙方得以實質掌握的資訊層,則決定了各自應負責的範圍與界限。 在IaaS(Infrastructure as a Service)模式中,就雲端環境中服務提供者與使用者雙方應負責之項目,服務提供者無從知悉在使用者虛擬實體(Virtual Instance)中運作的應用程式(Application)。應用程式、平台及在服務提供者基礎架構上的虛擬伺服器,概由使用者所完全主控,因此使用者必須負責保護所佈署的應用程式之安全性。實務上的情形則多由服務提供者協助或指導關於資訊安全保護的方式與步驟[5]。 在PaaS(Platform as a Service)模式中,通常由雲端服務提供者負責平台軟體層(Platform Software Stack)的資訊安全,相對而言,便使得使用者難以知悉其所採行的資訊安全措施。 在SaaS(Software as a Service)模式中,雲端服務提供者所能掌控的資訊層已包含至提供予使用者所使用的應用程式(Entire Suite of Application),因此該等應用程式之資訊安全通常由服務提供者所負責。此時,使用者應瞭解服務提供者提供哪些管理控制功能、存取權限,且該存取權限控制有無客製化的選項。 二、CSA「雲端資訊安全控制架構」[6] CSA於2010年提出「雲端資訊安全控制架構」(Cloud Controls Matrix, CCM),目的在於指導服務提供者關於資訊安全的基礎原則、同時讓使用者可以有評估服務提供者整體資訊安全風險的依循。此「雲端資訊安全控制架構」,係依循CSA另一份指引「雲端運算關鍵領域指引第二版」[7]中的十三個領域(Domain)而來,著重於雲端運算架構本身、雲端環境中之治理、雲端環境中之操作。另外CCM亦將其控制項與其他與特定產業相關的資訊安全要求加以對照,例如COBIT與PCI DSS等資訊安全標準[8]。在雲端運算之國際標準尚未正式出爐之前,CSA提出的CCM,十分完整而具備豐富的參考價值。 舉例而言,資訊治理(Data Governance)控制目標中,就資訊之委託關係(Stewardship),即要求應由雲端服務提供者來確認其委託的責任與形式。在回復力(Resiliency)控制目標中,要求服務提供者與使用者雙方皆應備置管理計畫(Management Program),應有與業務繼續性與災害復原相關的政策、方法與流程,以將損害發生所造成的危害控制在可接受的範圍內,且回復力管理計畫亦應使相關的組織知悉,以使能在事故發生時即時因應。 三、日本經產省「運用雲端服務之資訊安全管理指導原則」[9] 日本經濟產業省於2011年提出「運用雲端服務之資訊安全管理指導原則」,此指導原則之目的是期待藉由資訊安全管理以及資訊安全監督,來強化服務提供者與使用者間的信賴關係。本指導原則的適用範圍,主要是針對機關、組織內部核心資訊資產而委託由外部雲端服務提供者進行處理或管理之情形,其資訊安全的管理議題;其指導原則之依據是以JISQ27002(日本的國家標準)作為基礎,再就雲端運算的特性設想出最理想的資訊環境、責任配置等。 舉例而言,在JISQ27002中關於資訊備份(Backup)之規定,為資訊以及軟體(Software)應遵循ㄧ定的備份方針,並能定期取得與進行演練;意即備份之目的在於讓重要的資料與軟體,能在災害或設備故障發生之後確實復原,因此應有適當可資備份之設施,並應考量將備份措施與程度的明確化、備份範圍與頻率能符合組織對於業務繼續性的需求、且對於儲存備份資料之儲存媒體亦應有妥善的管理措施、並應定期實施演練以確認復原程序之有效與效率。對照於雲端運算環境,使用者應主動確認雲端環境中所處理之資訊、軟體或軟體設定其備份的必要性;而雲端服務提供者亦應提供使用者關於備份方法的相關訊息[10]。 参、針對雲端運算之認證與登錄機制 一、CSA雲端安全知識認證 CSA所推出的「雲端安全知識認證」(Certificate of Cloud Security Knowledge, CCSK),是全球第一張雲端安全知識認證,用以表示通過測驗的人員對於雲端運算具備特定領域的知識,並不代表該人員通過專業資格驗證(Accreditation);此認證不能用來代替其他與資訊安全稽核或治理領域的相關認證[11]。CSA與歐盟ENISA合作進行此認證機制的發展,因此認證主要的測試內容是依據CSA的「CSA雲端運算關鍵領域指引2.1版(英文版)」與ENISA「雲端運算優勢、風險與資訊安全建議」這兩份文件。此兩份文件採用較為概略的觀念指導方式,供讀者得以認知如何評估雲端運算可能產生的資訊安全風險,並採取可能的因應措施。 二、CSA雲端安全登錄機制 由CSA所推出的「雲端安全登錄」機制(CSA Security, Trust & Assurance Registry, STAR),設置一開放網站平台,採取鼓勵雲端服務提供者自主自願登錄的方式,就其提供雲端服務之資訊安全措施進行自我評估(Self Assessment),並宣示已遵循CSA的最佳實務(Best Practices);登錄的雲端服務提供者可透過下述兩種方式提出報告,以表示其遵循狀態。 (一)認知評價計畫(Consensus Assessments Initiative)[12]:此計畫以產業實務可接受的方式模擬使用者可能之提問,再由服務提供者針對這些模擬提問來回答(提問內容在IaaS、PaaS與SaaS服務模式中有所不同),藉此,由服務提供者完整揭示使用者所關心的資訊安全議題。 (二)雲端資訊安全控制架構(CCM):由服務提供者依循CCM的資訊安全控制項目及其指導,實踐相關的政策、措施或程序,再揭示其遵循報告。 資安事故的確實可能使政府機關蒙受莫大損失,美國南卡羅萊納州稅務局(South Carolina Department of Revenue)2012年發生駭客攻擊事件,州政府花費約2000萬美元收拾殘局,其中1200萬美元用來作為市民身份被竊後的信用活動監控,其他則用來發送被害通知、資安強化措施、及建立數位鑑識團隊、資安顧問。 另一方面,使用者也可以到此平台審閱服務提供者的資訊安全措施,促進使用者實施謹慎性調查(Due Diligence)的便利性並累積較好的採購經驗。 三、日本-安全・信頼性資訊開示認定制度 由日本一般財團法人多媒體振興協會(一般財団法人マルチメディア振興センター)所建置的資訊公開驗證制度[13](安全・信頼性に係る情報開示認定制度),提出一套有關服務提供者從事雲端服務應公開之資訊的標準,要求有意申請驗證的業者需依標準揭示特定項目資訊,並由認證機關審查其揭示資訊真偽與否,若審查結果通過,將發予「證書」與「驗證標章」。 此機制始於2008年,主要針對ASP與SaaS業者,至2012年8月已擴大實施至IaaS業者、PaaS業者與資料中心業者。 肆、雲端運算資訊安全國際標準之形成 現國際標準化組織(International Organization for Standardization, ISO)目前正研擬有關雲端運算領域的資訊安全標準。ISO/IEC 27017(草案)[14]係針對雲端運算之資訊安全要素的指導規範,而ISO/IEC 27018(草案)[15]則特別針對雲端運算的隱私議題,尤其是個人資料保護;兩者皆根基於ISO/IEC 27002的標準之上,再依據雲端運算的特色加入相應的控制目標(Control Objectives)。 [1]http://www.ntpc.gov.tw/web/News?command=showDetail&postId=277657 (最後瀏覽日:2013/11/20) [2]European Network and Information Security Agency [ENISA], Cloud Computing: Benefits, Risks and Recommendations for Information Security 53-59 (2009). [3]ENISA, Cloud Computing-Information Assurance Framework (2009), available at http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-information-assurance-framework . [4]ENISA, Cloud Computing-Information Assurance Framework 7-8 (2009). [5]ENISA, Cloud Computing-Information Assurance Framework 10 (2009). [6]CSA, Cloud Controls Matrix (2011), https://cloudsecurityalliance.org/research/ccm/ (last visited Nov. 20, 2013). [7]CSA, CSA Guidance For Critical Areas of Focus in Cloud Computing v2 (2009), available at https://cloudsecurityalliance.org/research/security-guidance/#_v2. (last visited Nov. 20, 2013). [8]https://cloudsecurityalliance.org/research/ccm/ (last visited Nov. 20, 2013). [9]日本経済産業省,クラウドサービスの利用のための情報セキュリティマネジメントガイドライン(2011),http://www.meti.go.jp/press/2011/04/20110401001/20110401001.html,(最後瀏覽日:2013/11/20)。 [10]日本経済産業省,〈クラウドサービスの利用のための情報セキュリティマネジメントガイドライン〉,頁36(2011)年。 [11]https://cloudsecurityalliance.org/education/ccsk/faq/(最後瀏覽日:2013/11/20)。 [12]https://cloudsecurityalliance.org/research/cai/ (最後瀏覽日:2013/11/20)。 [13]http://www.fmmc.or.jp/asp-nintei/index.html (最後瀏覽日:2013/11/20)。 [14]Information technology - Security techniques- Security in cloud computing (DRAFT), http://www.iso27001security.com/html/27017.html (last visited Nov. 20, 2013). [15]ISO/IEC 27018- Information technology -Security techniques -Code of practice for data protection, controls for public cloud computing services (DRAFT), http://www.iso27001security.com/html/27018.html (last visited Nov. 20, 2013).
歐盟修正重型車輛碳排放規定,擴大適用範圍並提高減排目標歐盟於2024年4月26日通過重型車輛二氧化碳排放性能標準(Regulation (EU)2019/1242)修正案,加速交通運輸部門的脫碳進程,以實現2050年淨零排放目標。修法重點如下: (1)擴大適用範圍:除了現有的卡車外,亦納入市區公車、長途巴士(7.5噸以上)、拖車等車型,如垃圾車等特種車輛也將從2035年起納入管制。而歐盟執委會將於2027年評估是否將5噸以下小型貨車也納入規範。 (2)明確減排目標:要重型車輛的二氧化碳排放量在2030年、2035年和2040年分別較2019年減少45%、65%和90%。求2030年起,90%的新售市區公車必須為零排放車輛,並在2035年達到100%零排放。 (3)技術中立原則:允許製造商選擇電動化、氫燃料電池或氫內燃機等不同技術路線來達成減排目標。 (4)豁免及彈性條款:針對礦業、林業和農業用車,以及軍用、緊急救災和醫療用途車輛等特殊用途車輛,或年產量低於100輛的小型製造商,新法將不強制納管。且為確保產業公正轉型,歐盟也提供相關培訓和資金援助,協助產業轉型和勞工技能提升。 歐盟執委會將於2027年評估這項規範的實施成效,並考慮納入更多車型、制定全生命週期碳排放計算方法,以及評估可再生燃料在交通運輸部門脫碳進程中的作用。