美國的數位服務推動小組18F(Digital service delivery,18F),因辦公室位於華盛頓特區F街18號而得名。2014年3月由總務署(General Service Administration,GSA)成立,透過業界與政府合作模式,幫助政府機關改善流程及增進效率,其所輔導的專案計畫將實際轉變政府機關提供數位服務及科技產品之運作模式,以達跨部會、機關之整合,並使對公眾的數位服務更便於使用。
18F為幫助美國各機關建造、購買及分享現代數位服務以提升政府的使用者經驗,提供了五項服務:(一)就已存的數位規格(digital component)打造訂製化產品(custom products);(二)以創新方式購買科技,使各政府能夠獲得更快、更好及產生更好結果的IT服務。詳細服務內容有代寫委外服務建議書(Request For Proposal,RFP)、開發市場利用現代技術購買IT服務、購買開放源代碼(open source code)以提升專案計畫;(三)替政府建造一安全、可擴展的工具與平台,其能更加符合需求並能夠持續為改善以達需求;(四)協助成為數位化組織,不只是增加組織內部數位化能力,更要形成數位習慣並最終促使組織文化改變;(五)透過討論會、設計工作室、指南及文件工作平台,提供及分享18F實際運用的相關現代數位化服務技術,使政府機關能自行複製及使用。
近期知名成果案例發生於加州。在加州,每一年的孩童福利服務案件管理系統超過2萬名社工利用為追蹤管理超過50萬件虐待及忽視兒童案件,若使用過時系統產生風險將無法估計,故加州政府、美國衛生與人群服務部(Department of Health and Human Services,DHHS)即利用了前述相關服務,與18F共同重新設計該系統的採購流程。從2015年11月至2016年10月,合作建立新系統不到1年的時間,導入了契約文件之簡化、模組化(modular)契約之合併、敏捷性開發(agile development)、使用者中心之設計及開放源(open source)之實踐。
首先,代寫委外服務建議書,18F於其中展示如何將專案計畫為模組化,亦即別於過往採購的傳統模式,非尋找單一開發商去建置整個已預設需求的系統,透過分離的方式,找尋不同開發商以更符合實際需求,亦能避免時間金錢的浪費,降低遲約或違約之風險。再者,聚集可能符合資格的供應商,邀請眾供應商建造以開放源代碼(open source code)方式的原型(prototype)。透過此一過程的激盪,18F從中協助評估所提出的原型、技術等,以了解供應商如何提出及是否符合使用者中心的設計。同時也能減少政府與供應商雙方的招標時間及行政成本。最後,為使加州政府機關能自行複製及使用相關現代數位化服務技術,18F示範敏捷軟體開發(agile software development)專案計畫。從中加州政府不僅瞭解如何為風險評估,且思考相關技術部門於專案計畫中的角色定位。
面臨現代化數位服務,在美國,聯邦與州政府都面臨極大挑戰。18F介入發展新模式,更能達實際需求,亦為內化之協助,利於政府自行發展其他數位服務。18F與加州政府合作之案例,或許能為國家發展數位服務運作之借鏡。
日本獨立行政法人情報處理推進機構於2025年1月28日發布《成為可信賴夥伴的資料治理手冊(下稱《手冊》)》,旨在呼籲企業建立與實施「貫穿資料生命週期的資料治理機制」,藉此將資料價值最大化,並將資料風險最小化。 《手冊》指出,資料驅動著社會發展,資料治理的重要性亦隨之提升。資料治理係指企業或組織透過機制、規則與制度等多種層面的策略性手段管理其重要資料資產,並透過制定相應的政策與規則,確保資料的品質與安全性。同時,考量資料具備易於複製、竄改且流通難以控制的特性,建立完善的資料治理機制亦有助於在共享資料的過程中維持其品質及安全性。推動資料治理的基礎,則仰賴適當且有效的資料管理機制,亦即確保在蒐集、處理、儲存與使用等資料生命週期各階段皆能落實資料管理機制。然而,資料管理本身要能發揮效益,仍須依賴組織具備足夠的資料成熟度,即具備正確處理與應用資料的整體能力,方能系統性的落實管理與治理工作。 根據《手冊》內容,透過資料治理,企業或組織將能確保資料品質、透明度及安全性,並基於可信任的資料進行決策,進而有效提升決策精準度,實現風險管理與法規遵循,進一步強化自身在資料經濟中的「價值」、「信任」與「公正性」。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料治理機制,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為制度設計與實務推動之參考,以強化資料治理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
什麼是「美國CFIUS」?美國CFIUS又稱為美國外資投資委員會(Committee on Foreign Investment in the United States),其依據1950年國防製造法(Defense Production Act of 1950)第721款The Exon-Florio修正案,授權組成的政府委員會。 美國外資投資委員會CFIUS的主要任務,在於審查外資併購交易,以防外國人透過跨國企業併購方式,控制美國企業,危及國家經濟與軍事安全並導致本國高科技技術外流。 美國在2007年簽署「外國投資和國家安全法」(The Foreign Investment and National Security Act of 2007,簡稱FINSA),該法案針對外國投資安全審查項目,包括加強國家安全概念、完善CFIUS審查與監督職責等。 近期,新的立法提案方向為「外國投資風險審查現代化法案」(the Foreign Investment Risk Review Modernization Act of 2017,簡稱FIRRMA)。此法案目標是推展CFIUS現代化改革,限制外資對美國科技公司和基礎設施的投資,以維護國家安全。該法案將帶給國會、外商投資及CFIUS的監管環境顯著改變,具體內容包括擴大CFIUS管轄權與權力、擴大對美國關鍵技術與基礎設施投資審查、增加國家安全風險考量因素等。
日本內閣府發布「綜合創新戰略2024」為應對日益嚴峻的國際情勢,並避免研究能力下降、生態系進展緩慢對經濟、社會發展造成衝擊,日本內閣府於2024年6月4日發布「綜合創新戰略2024」(統合イノベーション戦略2024),提出三大強化措施與三大發展主軸,綜整未來科技與創新的重要發展方向。具體內容整理如下: 1.強化措施 (1)關鍵技術綜合戰略 開發核心技術,在各戰略領域如人工智慧、機器人、物聯網等,透過產官學界合作推進技術融合與研究開發、推動人才培育,並促進新創發展。 (2)加強國際合作 從全球視角積極運用資源進行策略性協作,並以促進開發利用、確保安全性為主要目標,主導、參與重要技術相關之國際規則制定。 (3)強化人工智慧領域競爭力並確保安全性 包含創新研發人工智慧之應用,及利用人工智慧加速創新速度等。 2.發展主軸 (1)推進先進科技戰略 針對各重要領域如人工智慧、核融合能源、量子科技、生物科學、材料科學、半導體與通訊技術(6G)推展研究;確保大學與研究機構之研究安全性與倫理,並為設立智庫強化研究機能預做準備;同時綜合運用各領域的知識創造價值,為整體社會提供自動化、省力化、防災減災之科學技術。 (2)研究能力與人才培育 透過補助優秀大學與研究費用、扶植區域核心及具有特色的研究型大學、強化國家研究設施並促進設施間之合作性發展研究基礎;以及推動開放政府資助研究之資料與學術論文。 (3)營造創新生態系 透過SBIR計畫(Small Business Innovation Research,小型企業創新研發計畫)補助,並促進新創企業之政府採購;藉由產官學合作推展創新;以及擴大政府與民間研發投資規模,促進人才、技術、資金在大企業與新創公司間流動等。 日本政府認為,核融合能源與量子科技等關鍵技術將為新產業發展的開端,本戰略亦將成為未來日本新一期科學技術與創新基本計畫(科学技術・イノベーション基本計画)開展之基礎。我國於半導體、量子科技等關鍵科技發展皆緊跟國際腳步,因此相關戰略措施後續之推動與落實,亦值得我國持續關注、參考。
美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。 《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括: 1.對決策過程進行描述,比較分析其利益、需求與預期用途; 2.識別並描述與利害關係人之協商及其建議; 3.對隱私風險和加強措施,進行持續性測試與評估; 4.記錄方法、指標、合適資料集以及成功執行之條件; 5.對執行測試和部署條件,進行持續性測試與評估(含不同群體); 6.對代理商提供風險和實踐方式之支援與培訓; 7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款; 8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄; 9.自透明度的角度評估消費者之權利; 10.以結構化方式識別可能的不利影響,並評估緩解策略; 11.描述開發、測試和部署過程之紀錄; 12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源; 13.無法遵守上述任一項要求者,應附理由說明之; 14.執行並記錄其他FTC 認為合適的研究和評估。 當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。