何謂「智慧機械」

  智慧機械產業為目前我國五大創新產業政策之一,主要目的是將臺灣從精密機械升級為智慧機械,爰此,行政院於105年7月核定「智慧機械產業推動方案」,整合我國豐沛的新創能量,建立符合市場需求之技術應用與服務能量,以創造我國機械產業下一波成長新動能。

  智慧機械之定義係指整合各種智慧技術元素,使其具備故障預測、精度補償、自動參數設定與自動排程等智慧化功能,並具備提供Total Solution及建立差異化競爭優勢之功能;智慧機械的範疇包含建立設備整機、零組件、機器人、智慧聯網、巨量資料、3D列印、網實融合CPS、感測器等產業。而智慧製造係指產業導入智慧機械,建構智慧生產線(具高效率、高品質、高彈性特徵),透過雲端及網路與消費者快速連結,提供大量客製化之產品,形成聯網製造服務體系。

  未來我國智慧機械與智慧製造領域仍待研發突破之項目有:工業用等級之視覺/觸覺/力感知等感測模組與驅動控制技術;微型感測元件智慧化;開放性標準網路通訊技術;機器型通訊及安全技術;耐延遲及低耗能機器聯網;健全人機智能介面,提升人機協同安全與效率;智慧聯網共通服務平台、資料分析與效能管理;網實融合智能系統需結合專業分析模型提升準確性及可靠度;機器人智慧整合能力及反應速度;供需產能整合與決策系統等等。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 何謂「智慧機械」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7656&no=64&tp=5 (最後瀏覽日:2026/01/11)
引註此篇文章
你可能還會想看
智慧型運輸系統之頻譜規劃-參考美國及歐盟之規範

社群媒體發展網路不當言論管理機制之趨勢觀察

美國為加強聯邦補助生物科研之安全性而提出新規範

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP