聯網自動駕駛車(CAV)

  聯網自動駕駛車(Connected and Autonomous Vehicles, CAV)是一種自動化聯網載具,係自動駕駛車以及互聯汽車兩種科技的集合,而CAV僅須符合其一即可稱之。按英國交通部的定義,自動駕駛車係為「無須稱職的駕駛者管理各種道路、交通與天候條件之下,能安全完成旅程的車輛。」目前上市產品中已可見部份自動駕駛車的身影,諸如自動路邊停車系統、先進輔助駕駛系統、自動緊急煞車系統等等。

  互聯車輛科技允許車輛之間的互相溝通以及更廣泛聯網,目前已有的互聯車輛科技如動態導航系統、緊急求救系統(eCall)等,特別是歐盟欲規範未來新車都必備eCall系統,該系統可偵測事故發生並自動開啟安全氣囊、撥打求救電話並開啟全球定位系統(GPS),以利醫護人員快速救援。目前有三種正在發展中,用以支援互聯車輛的科技:V2V(車輛之間互聯)、V2I(車輛與交通設備互聯)、V2X(車輛與任何適當的科技互聯)。而發展CAV有六種益處,包括提升行車安全、減少交通阻塞、減少碳排放、更多自由時間可運用、任何人都可平等地使用CAV以及改良道路之設計。

  我國刻正實施行政院於2014年5月核定之第2階段「智慧電動車輛發展策略與行動方案」,推動智慧電動車整車及零組件性能提升,協助廠商提升製程及資訊應用功能;研析國際驗證及測試規範,完善智慧電動車產業價值鏈。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 聯網自動駕駛車(CAV), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7657&no=67&tp=5 (最後瀏覽日:2026/01/15)
引註此篇文章
你可能還會想看
WTO歐盟生技產品案解析(上)

美國第七巡迴上訴法院於Wallace v. IBM, Red Hat, and Novell 一案認定GPL或自由軟體授權模式不違反聯邦反托拉斯法

  美國第七巡迴上訴法院( U.S. Court of Appeals (7thCir) )最近就 Wallace v. IBM, Red Hat, and Novell 一案做出判決,本案爭執重點在於 GPL 授權條款與反托拉斯法之間的關係,美國第七巡迴上訴法院認為 GPL 授權條款並不違反反拖拉斯法,法院也同時明確表示,一般而言自由軟體無須擔心會違反反托拉斯法。   本案上訴人 Daniel Wallace 係程式設計師,其欲販售由 BSD ( Berkeley Software Distribution )所開發出來的競爭軟體給各級學校。 BSD 是 Linux 的衍生版本,而 Linux 作業系統則是屬於自由軟體的一種,想要使用 Linux 的人就必須遵守 GPL 授權條款。依 GPL 授權條款規定,不論 Linux 或 Linux 之衍生著作均不得收取授權費用,上訴人因此指控 IBM 、 Red Hat 、 Novell 與自由軟體協會涉嫌共謀將軟體價格設定在零,涉嫌以掠奪性定價( predatory pricing claim )方式削減作業系統市場之競爭,已違反反托拉斯法。   法院認為,本案並無法主張掠奪性定價,蓋被上訴人 IBM 、 Red Hat 及 Novell 並無法因此而取得獨佔價格,其授權價格之所以為零乃是遵照 GPL 授權條款的結果,且消費者並未因此受到損害。其次,法院也指出,著作權法通常對他人之改作權加以限制,其目的是為了收取授權金,不過著作權法人亦可用以確保自由軟體維持零授權金,因此任何嘗試想要販售自由軟體之衍生著作者,將會違反著作權法,即令改作人不同意接受 GPL 授權條款的約束。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

智慧電表的陷阱

  美國及歐洲都開始引進附加通訊功能的電表(所謂智慧電表)。這一波動向也真正開始影響到日本。日本國內最大家的東京電力公司將於2010年10月開始進行智慧電表的實際驗證研究。   雖然至今只有關西電力公司與九州電力公司有引進智慧電表,但在10年之後,日本大半以上的電表會是智慧電表。   從短期來看,智慧電表就只具有使用電力的遠距抄表跟遠距截斷的功能。但是就只具有這樣的功能是不足以讓眾多目光聚焦的,它所具有的是期待在未來透過電表跟家電機器等所形成的資訊通信網絡。在目前許多企業打算就先透過網路蒐集使用電力的資訊,之後在提供新的附加服務。   這樣的動向不只是發生在電力公司,在瓦斯及自來水業界也正在發生。例如東京瓦斯公司將於2010年度起,開始實驗運作具有無限通訊功能的瓦斯表,快的話在2012年就會正式更換約1000萬台的瓦斯表。東京瓦斯公司還計畫在之後將用於瓦斯表上的通訊系統擴張到自來水表的抄表上。美國企業如IBM公司也積極投入自來水表的「智慧化」。   但是,在實際引進智慧電表時,美國發生了引進智慧電表的住戶的電費急速增加,產生了不少的訴訟,美國德州Oncor電力公司正面對這樣的訴訟,加州的PG&E公司的顧客也正聲請相關的訴訟。   專家們指出一些會影響電費增加的原因,其中就指出因為引進智慧電表使得「正確測量出電力使用量」這也是因為美國至今所使用的電表太過老舊,無法正確的測量出正確的電力使用量,以致用戶都在付出比實際使用量要少的電費。所以在引進智慧電表測量出正確的電力使用量之後,就產生出「電費增加」的錯覺。   現在美國的電力公司主要把智慧電表用於自動抄表上,這只是利用智慧電表的第一步。若在初始階段無法得到消費者的支持,之後要推廣則會更為困難。使用電力的相關資訊在某種意義上可視為是個人資料的其中一種。隱私權的問題等與消費者保護汲汲相關的議題陸續都會出現。   美國眾議員Edward Markey在眾議院提出了電力公司要將智慧電表所測量的電力使用資訊即時提供給消費者,並有保護該資訊隱私權義務化的法案。在技術面上,有關重視資訊安全的通訊型式的討論亦蓬勃發展起來。

TOP