美國國際消費電子展(International Consumer Electronics Show, CES)是每年全球介紹消費性電子產品的第一場重頭戲,2013年於美國時間1月8日在拉斯維加斯會議中心(Las Vegas Convention Center, LVCC)展開,展期持續四天。CES展展出面積17萬平方公尺,有超過3,250個參展公司,展出20,000種最新科技的電子產品,超過15萬人次參加。除了展出電子產品最新趨勢,CES同時也對於電子資訊相關議題開設研討會議,今年共有超過300場的研討會。 其中有一系列名為「創新政策高峰會」(Innovation Policy Summit)的研討會主題,討論政府部門如何與企業合作促進經濟成長及創新應用。高峰會中除邀請各科技領域中的創新發明者,還邀請政府部門、國會議員等,討論與科技政策最相關的種種議題。值得注意的是,創新政策高峰會中一場主題為「打擊專利蟑螂」(Fighting the Patent Trolls)的研討會於1月8日舉行,討論有關政府及民間業者如何打擊影響科技產業的專利蟑螂(Patent Trolls),與會者除了有眾議員Peter DeFazio,還有Google、電子前線基金會(Electronic Frontier Foundation,EFF)、電子製造商Voxx International、零售商Home Automation等等企業代表,分享被專利蟑螂控訴專利侵權的經驗及提供意見。 在研討會中討論出的打擊方案有以下幾點: ‧擴展DeFazio眾議員提案的「保護高科技創新者免於惡意訴訟法案」(The Saving High-tech Innovators from Egregious Legal Disputes Act, SHIELD Act)到其他受專利蟑螂攻擊的產業,同時修改法案要求原告應在法院判決其負擔被告訴訟費用時,同時提出擔保金。 ‧應簡化專利局審核時質疑(challenge)不良專利的程序。 ‧在專利訴訟中對實際損害(actual damages)應提出更明確證據,並應更嚴格審查核發初步禁制令。 ‧科技公司應設法自救或組成聯盟,或者推廣Twitter公司2012年提出的「專利發明者協議」(Innovator Patent Agreement),該協議讓公司內專利發明者對其發明專利有更大控制權,並承諾公司僅會將其專利用於防衛用途。 其中第一點的SHIELD法案,是眾議員DeFazio及Jason Chaffetz為遏止專利蟑螂於2012年8月共同提案。該法案目標在打擊專利蟑螂,針對電腦軟硬體提出的專利訴訟,原告若無勝訴之合理可能性(reasonable likelihood of succeeding),法院得判決原告必須負擔被告訴訟費用及律師費用,以達到遏止專利蟑螂的目的。然而目前SHIELD法案立法進度停滯,DeFazio預計將提出修正版本爭取通過。DeFazio表示,該法案若要成功立法,需要各界聯合及廣泛支持。
美國又傳疑似商業間諜活動2007年3月舊金山聯邦法院受理Oracle軟體公司對競爭對手SAP及其關係企業TomorrowNow提出濫用電腦詐欺、商業間諜行為告訴。 Oracle公司表示,自2006年底起便發現公司網站中與PeopleSoft、J.D. Edwards有關的客戶支援與維護部分出現流量暴增的現象。犯罪者冒用客戶的ID進入網站中竊取重要軟體與資料,目前已發現超過一千萬筆的違法下載紀錄,而犯罪者IP位址是來自於SAP德州辦公室所在地。 訴狀中指出,SAP員工涉嫌冒用多名PeopleSoft及J.D. Edwards的客戶帳號,登入並存取Oracle的重要資料與客戶連繫系統。因此,Oracle要求法院對SAP發出禁制令,以阻止其違法行為,另聲請法院下令要求SAP歸還非法竊取之資料與文件。 面對Oracle指控,SAP公司發言人Steve Bauer表示公司目前仍在瞭解與檢視該案件,因此不便就整起事件發表評論,但公司保證將全力回擊Oracle的指控。
新興通訊設備與服務之無障礙義務—以ITU政策及美國CVAA為例 美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。