歐盟執委會下設機構策略與評估服務中心(CSES)在2016年2月向歐洲議會提出歐洲落實工業4.0政策執行分析報告,指出執行工業4.0帶來的科技、社會、以及商業環境變遷:
(1)科技變遷
數位化將對中小企業帶來挑戰,其中涉及之法律議題包括:促進數位安全致生之企業成本或風險、智慧財產權保護、個人資料與隱私、環境保護、健康和安全等。
(2)社會變遷
企業應用工業4.0技術時將面臨工作方式上之調整,整體工業4.0技術分佈不均則有可能導致集中化競爭的情形增加。
(3)商業環境變遷
隨著中小企業參與供應鏈,將帶來成本、風險、缺乏彈性、缺乏政策性的單獨運作等各方面挑戰,而重點在於藉由標準化串起整體產業,與其他的企業競爭。
我國在2016年7月通過「智慧機械產業推動方案」,以精密機械之推動成果及我國資通訊科技能量為基礎,導入智慧化相關技術,建構智慧機械產業新生態體系,並且預期能打通供需生產資訊鏈,提升人均製造力,同時併以連結在地、連結未來、連結國際為推動策略主軸,其中相關的法律議題、以及對於社會或商業環境帶來的變遷影響評估,自屬重要。
本文為「經濟部產業技術司科技專案成果」
美國加州議會於2018年9月28日通過加州參議院之對話機器人揭露法案(Bots Disclosure Act, Senate Bill No. 1001)。此一法案於美國加州商業及專門職業法規(Business and Professions Code)第七部(Division)第三篇(Part)下增訂了第六章(Part)「機器人」乙章,擬防範「利用對話機器人誤導消費者其為真人同時並誤導消費者進行不公平交易」之商業模式,本法案將於2019年7月1日正式生效。依此法案,企業如有使用對話機器人,則應揭露此一事實,讓消費者知悉自己是在與對話機器人溝通。 美國加州對話機器人揭露法案對於「機器人」之定義為全自動化之線上帳戶,其所包含之貼文、活動實質上並非人類所形成。對於「線上」之定義為,任何公眾所可連結上之線上網站、網路應用軟體、數位軟體。對於「人類」之定義為自然人、有限公司、合夥、政府、團體等其他法律上組織或擬制人格。如業者使用對話機器人進行行銷、推銷時,有揭露其為對話機器人之事實,將不被認定違反對話機器人揭露法案,但揭露之手段必須明確、無含糊且合理可讓消費者知悉其所對話之對象為非人類之機器人。值得注意者為,美國加州對話機器人揭露法案,針對「美國本土造訪用戶群在過去12月間經常性達到每月10,000,000人」之網站,可排除此規定之限制。 本法案僅課予業者揭露義務,至於業者違反本法之法律效果,依本法案第17941條,需參照其他相關法規予以決定。例如違反本法案者,即可能被視為是違反美國加州民法揭露資訊之義務者而需擔負相關民事賠償責任。最後值得注意者為,本法案於第17941條針對「利用對話機器人誤導公民其為真人同時影響公民投票決定」之行為,亦納入規範,亦即選舉人如有利用對話機器人影響選舉結果而未揭露其利用對話機器人之事實時,依本條將被視為違法。
美國FDA發布於海內外應對2019年新型冠狀病毒之行動聲明美國食品及藥物管理局(Food and Drug Administration, FDA)於2020年2月14日,發布於海內外應對2019年新型冠狀病毒之行動聲明,其包括: 主動監控供應鏈:由於疫情可能影響醫療產品供應鏈,FDA已與數百家藥品與醫療器材製造商保持聯繫,並與歐洲藥品管理局等全球監管機構保持同步,以評估監控潛在之製造中斷的警訊,且與生物製劑製造商聯繫,以評估有關原料之供應問題。若FDA確定醫療產品可能會短缺,則可能會採取與製造商緊密合作、加快對替代供應之審查等措施來防止短缺。 針對海外生產之FDA產品合規性之查驗與監控:FDA採取基於風險之模型來確認要進行查驗之公司,基於某些特定條件,會被認為具有較高風險之場所會被優先查驗,這些條件包括固有之產品風險、患者接觸產品之程度、過去查驗之歷史紀錄等等。除了查驗之外,其他防止不符FDA標準之產品進入美國市場之工具包括進口警示、增加進口採樣與篩查、替代查驗之紀錄要求(requesting records)。FDA可對市場上不合法之產品或違法之公司或個人採取監管與強制措施,例如警告信、扣押或禁制令。 消費品安全:美國海關暨邊境保護局將輸入美國、受FDA監管之產品交由FDA審查,其必須遵守與美國國內產品相同之標準,在FDA決定其可接受性之前不得將其分銷至美國。FDA並成立跨機關之專案小組,密切監控聲稱可預防、治療或治癒新型冠狀病毒疾病之詐欺性產品和虛假產品,並採取可能之執法行動。 對於診斷、治療與預防疾病之努力:FDA致力於促進安全有效之醫療對策的發展,提供法規建議、指導和技術援助,以促進針對用於此病毒之疫苗、治療和診斷測試之開發和可用性。FDA已核發緊急使用授權(Emergency Use Authorization, EUA),以便立即使用由美國疾病管制與預防中心所開發之診斷試劑,並已制定用於檢測病毒之EUA審查範本,其中概述申請EUA前所需之資料要求,目前已提供給表示有興趣開發該病毒之診斷工具之多位開發者。 後續行動:FDA將密切監視疫情並與跨部門合作夥伴、國際合作夥伴、醫療產品開發商與製造商合作,以幫助推進針對病毒之應對措施。
知己知彼,兩岸研發經費比一比依據本(2013)年9月26日中國大陸國家統計局、科學技術部、財政部聯合發布之統計公報顯示,去(2012)年全中國投入在研究與試驗發展(R&D)之經費支出達人民幣(以下同)10,298.4億元,較前(2011)年增加1,611.4億元,成長約18.5%。而大陸地區之研究與試驗發展經費約佔其國內生產總值(GDP)之1.98%,較2011年的1.84%提高0.14個百分點。惟同期(2012年,即民國101年)我國研發經費總計為新台幣4,312.96億元,佔臺灣地區GDP比率為3.07%,較中國大陸1.98%之比率略高。 另據大陸統計公報顯示,在中國大陸10,298.4億元之研發經費內,用於「基礎研究」之支出為498.8億元,比2011年增長21.1%;在「應用研究」之經費則為1,162億元,增長13%;至於「試驗發展」經費支出則為最大宗,達8,637.6億元,增長19.2%。總體來說,大陸地區之基礎研究、應用研究和試驗發展3項,佔其研發經費總支出之比率分別為4.8%、11.3%和83.9%;而臺灣地區則是以基礎研究、應用研究及技術發展等3類為區分,在2011年時分別為9.7%、23.7%及66.6%,說明臺灣地區在基礎與應用研究2部份佔研發經費總支出之比率較中國大陸為高。 然而相關研發經費投入至後續產出專利、運用,能否有效結合,或因而強化國家競爭力、減少需用單位間之落差,已是兩岸或其他國家所關切的焦點。因此,為利知己知彼,除了瞭解競爭國家之資源投入情形外,其研發成果相關運用情形等,亦實值得我們後續觀察、研究。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。