歐盟報告提出工業4.0帶來的三大變遷

  歐盟執委會下設機構策略與評估服務中心(CSES)在2016年2月向歐洲議會提出歐洲落實工業4.0政策執行分析報告,指出執行工業4.0帶來的科技、社會、以及商業環境變遷:
(1)科技變遷
數位化將對中小企業帶來挑戰,其中涉及之法律議題包括:促進數位安全致生之企業成本或風險、智慧財產權保護、個人資料與隱私、環境保護、健康和安全等。
(2)社會變遷
企業應用工業4.0技術時將面臨工作方式上之調整,整體工業4.0技術分佈不均則有可能導致集中化競爭的情形增加。
(3)商業環境變遷
隨著中小企業參與供應鏈,將帶來成本、風險、缺乏彈性、缺乏政策性的單獨運作等各方面挑戰,而重點在於藉由標準化串起整體產業,與其他的企業競爭。

  我國在2016年7月通過「智慧機械產業推動方案」,以精密機械之推動成果及我國資通訊科技能量為基礎,導入智慧化相關技術,建構智慧機械產業新生態體系,並且預期能打通供需生產資訊鏈,提升人均製造力,同時併以連結在地、連結未來、連結國際為推動策略主軸,其中相關的法律議題、以及對於社會或商業環境帶來的變遷影響評估,自屬重要。

本文為「經濟部產業技術司科技專案成果」

※ 歐盟報告提出工業4.0帶來的三大變遷, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7668&no=64&tp=5 (最後瀏覽日:2026/02/16)
引註此篇文章
你可能還會想看
美國行動健康照護新近法制趨勢─兼論對我國法之觀察與建議

澳洲P2P業者Kazaa面臨存亡的最後通牒

澳洲雪梨聯邦法院於本月 24 日對分散式 P2P 業者 Kazaa 發出命令,要求 Kazaa 營運商 Sharman Networks 必須在 10 日內( 12 月 5 日之前),在其提供下載的軟體中加入關鍵字過濾技術( keyword filter system ),否則應立即停止營運。市場人士普遍認為 Kazaa 暫時停止營運的可能性相當地高。   源起於去年底澳洲當地唱片業者控告 Kazaa 一案,今年 9 月 5 日澳洲聯邦法院認定 Kazaa 營運商 Sharman Networks 構成著作權侵害,除判決唱片業者勝訴外,法院並判定 Kazaa 必須在 2 個月內修改其軟體程式,加入相關過濾技術,以避免使用者傳輸違法音樂檔案;另一方面,判決賦予唱片業界得提交 3000 個關鍵字名單 ( 包括了曲目及歌手姓名 ) 要求 Kazaa 加以過濾的權利,該名單並得每兩週加以更新。   直至本月 24 日, Kazaa 仍表示其無法控制高達 100 萬使用者的個人行為,拒絕修改其提供下載的 P2P 軟體,導致聯邦法院不得不下達最後通牒。 Kazaa 營運商 Sharman Networks 雖已提起上訴,但在現時關鍵字過濾技術實施不易之下,澳洲 Kazaa 恐將步上已於本月 7 日關閉的 Grokster 後塵。

臺北高等行政法院103年度訴更一字第120號判決對健保資料作目的外運用之態度

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP