歐盟布魯塞爾會議規劃組織(QED)在2016年12月針對第四次工業革命法制議題提出討論,呼應2016年4月歐盟執委會提出之歐洲產業數位化政策,加速標準建立,並且預計調整現行法律規制,著重於資料所有權、責任、安全、防護方面等支規定,討論重點如下:
1.目前面臨之法律空缺為何
2.歐洲產業數位化是否須建立一般性法律框架
3.標準化流程是否由由公部門或私部門負責
4.相容性問題應如何達改善途徑
5.資料所有權部分之問題如何因應
6.數位化之巨量資料應如何儲存與應用,雲端是否為最終解決方式
7.如何建立適當安全防護機制。
8.一般資料保護規則是否足以規範機器產生之數據
9.各會員國對於資料保護立法不同,其間如何調合朝向資料自由發展之方向進行
我國2016年7月由行政院通過「智慧機械產業推動方案」,期待未來朝向「智慧機械」產業化以及產業「智慧機械化」之目標進行,未來,相關法制配套規範,如個人資料保護、巨量資料應用、以及標準化等議題,皆有待進一步探討之必要。
本文為「經濟部產業技術司科技專案成果」
英國標準協會(British Standards Institution, BSI)於2020年4月30日發布「PAS 1880:2020:自駕車控制系統開發及評估指引(PAS 1880:2020: Guidelines for developing and assessing control systems for automated vehicles)」,該文件提供一系列的準則,提供自駕車研發者於發展控制系統時可安全有效的進行布建;本文件所涵蓋之自駕車類型主要為於(研發者)所設計及規劃之特定運行範圍內(operational design domain,以下簡稱ODD)下不需人工介入即可運送旅客與貨物者。 指引中就自駕車之控制系統設計進行分類,並提出研發者應針對不同目的與重點進行說明以及相關應遵循事項,其中應包含以下項目: 任務:自駕車之任務應被定義。 ODD:自駕車之ODD應被定義並且應可涵蓋其所有執行任務之面向。 感知運作:於任務中感知運作系統執行時,自駕車應可判斷其是否遵循ODD之範圍,並可提供相關資料予決策系統。 決策:當決策系統執行時,自駕車應可實施所有為達成任務所決策規劃之活動。 控制運作:當控制運作系統執行時,自駕車應可於正常情況下控制其動作以完成任務,並可於無法執行正確行動時採取合適之措施。 監控運作:當監控運作系統執行時,於整個任務過程中,自駕車應可監控其自身之運作。 人身安全、系統安全與有效(Safe, secure and effective):自駕車應可於所有時刻皆保持運作之人身安全、系統安全性與有效性。
日本《科學技術指標》日本《科學技術指標》為文部科學省直接管轄之國立實驗研究機關「科學技術與學術政策研究所(NISTEP)」於每年度發布,主要為讓閱讀者基於客觀而定量的數據,體系性地掌握日本國內科學技術活動的基礎資料,將科學技術活動區分為「研究開發費」、「研究開發人才」、「高等教育與科技人才」、「研究開發產出」、以及「科技與創新」等5個類別,同時制定約180個指標以表達日本國內狀況。本年度公布的《科學技術指標2019》,則新增了「日本與美國各部門擁有博士學位者」、「各產業研究人才集中度與高端研究人才活用程度間之關係」、「主要國家取得博士學位之人數的變動狀況」、「運動科學研究類論文動向」、「主要國家貿易額度的變動狀況」、「各國與各類型獨角獸企業數」等20個指標。 依《科學技術指標2019》分析,日本的研究開發費與研究者人數於日、美、俄、法、英、中、韓等七個國家中皆位居第三,論文數則為世界排名第四,受高度矚目的論文數世界排名第九,專利家族(Patent Family)數世界排名第一而與去年相同。就產業的部份,研究者中擁有博士學位者之比例依據產業類型的不同而有所差異,與美國相較,高階人才之實際就業情況未能充分發揮其所學。另一方面,就每一百萬人中有取得博士學位的人數,在各主要國家當中,僅有日本呈現減少的趨勢。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
美國聯邦最高法院認定多方複審程序並不違憲美國聯邦最高法院於2018年4月24日針對OIL STATES ENERGY SERVICES, LLC v. GREENE’S ENERGY GROUP, LLC, ET AL.ㄧ案作成判決。大法官以 7-2 投票表決通過,認定美國專利商標局(United States Patent and Trademark Office,USPTO)所屬專利審查暨上訴委員會(Patent Trial and Appeal Board,PTAB)進行內部專利審查「多方複審 (Inter Partes Review,IPR)」程序並未違憲。多方複審程序係國會在制度設計上針對專利獲證許可後,授權行政機關可經由實質利害關係人提出申請後,得有機會再次檢視其原先核發專利獲證許可的權限。因此被告經由行政機關專利審查獲得之權利,與被告在美國憲法下只能經由聯邦法院和陪審團裁決所保障權利不同。 本案自去年聯邦最高法院受理後,即成為美國發明法(Leahy-Smith America Invents Act)施行後備受矚目的重大案例之一。主要因為本案凸顯出各產業對多方複審程序實質影響的反應。若多方複審程序被判無效的話,將導致大部分專利紛爭從專利審查暨上訴委員會移回聯邦法院。導致美國發明法欲藉由行政審查改善並減輕司法體系負擔之目的難以達成,且導致專利訴訟更為耗時且昂貴,恐造成「非實施專利事業體」(Non-Practicing Entity, NPE)更加猖獗。因此,資通訊產業等普遍受到專利侵權訴訟困擾的企業大多贊同多方複審程序的合憲性。然而,大法官 John Roberts 和 Neil Gorsuch 對此一保守的決定表示異議,認為辛苦研發之專利僅因為第三人提起申請就受到行政機關撤銷,而非經由司法體系裁決仍有其疑義之處。仔細檢視多方複審程序的進行,似有違背於司法審查中要求獨立性的種種目的和精神。從歷史上來看,縱使行政機關具有核發專利獲證許可的權限,但不代表這可以導出行政機關就有撤銷專利的權限。因此,不同意見之大法官認為藉由行政機關的審議程序取代司法審查對專利可以做出撤銷的決定並不合憲。