透過輸入網址或點選超連結(Hyperlink)方式找尋資料,是網路運作基礎之一。而單純以Hyperlink方式另開新視窗呈現其他網頁,由於只是方便快速連結到其他網站或網頁內容,並無涉及重製行為,因此實務上普遍認為並無侵害著作權的問題。然而瑞典Attunda地方法院於2016/10/13,就一則使用Hyperlink方式之案例卻認定有侵害著作權。
此案例起因於瑞典原告Jonsson在非洲Zambezi河上,拍攝到高空彈跳發生意外之影片,後該影片未得原告同意遭他人上傳至YouTube網站。被告比利時L’Avenir新聞網站報導此事件時,於文中提供Hyperlink(lånkat från hemsidan till YouTube),使讀者能連結到YouTube上之該則影片。本案原告主張並無授權上傳YouTube影片,也無允許被告在其網路報導得以提供Hyperlink連接至YouTube網站影片,以此要求L’Avenir新聞網站負擔侵害其公眾傳輸權之責任。
瑞典Attunda地方法院引用歐盟法院於2016/09/08GS Media, C-160/15案中關於Hyperlink判決見解,認定若超連結之內容有權利人合法授權,Hyperlink行為固無侵權可言,但若連結之內容未受權利人合法授權時,需先判定行為人是否是以營利為目的;若為肯定,則推定行為人明知其內容違法、Hyperlink行為構成公眾傳輸行為,但行為人可舉證推翻,證明其不知內容違法而未構成侵權。本案由於超連結內容是未經由原告授權,且瑞典Attunda法院認定L’Avenir新聞網站以營利為目的使用Hyperlink,於網站無法證明不知內容非法情況下,因此判定被告構成侵權。
瑞典法院所引用的歐盟判決引起諸多批評,論者有謂超連結功能是網路運作基礎之一,該判決認為以營利目的使用即應推定對內容違法有明知,不僅「營利目的」此一條件之內涵為何,需待後續更多判決個案方可確定具體內容;而且造成所有線上新聞網站擬使用超連結影片及內容、又無法得知內容是否有被合法授權時,必須承擔更大的侵權風險;因此產生的自我審查,將弱化網路之基本運作功能,且使言論自由及通訊自由受到侵害。
德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
何謂「商標名稱通用化」?商標具有表彰商品來源之功能,其設計為配合商品特色而具有識別性。商標註冊後,若不具有識別及表彰商品來源之特徵,而失去商標應有之基本功能,依據商標法第63條第4款,不具識別性之商標,無法主張商標專用之權利。商標名稱通用化,即是指原本具有識別性之商標,通常為著名商標,因為社會大眾消費習慣以及認知的改變,變成商品的通用名稱,此時即認該商標失去識別性,失去法律保護。 商標名稱通用化形成之原因不一,可能是企業經營者設計商標時,有意使用社會大眾熟悉之名稱作為商標,也有可能非商標權利人自己故意造成,特別是著名商標,容易流於通用化。例如,「可樂(cola)」一詞由可口可樂(coca cola)公司率先註冊使用,但於消費者心目中已成為特定碳酸飲料之名稱,則不得由可口可樂公司獨占使用;又如火柴盒玩具汽車,為火柴盒大小包裝之玩具,企業經營者以 matchbox 作為該玩具的文字商標,但美國聯邦最高法院認為matchbox屬於該商品之通用名稱,否認其商標權。 實務上判斷商標名稱通用化,以該商標名稱在一般消費者心目中認識的主要意義為標準。一個經過市場行銷之註冊商標名稱,若在消費者心目中屬於商品通用名稱,而非特定商品來源,則表示該商標名稱已不具備商標功能,不受法律保護。
2005年我國對美專利申請件數落居外國申請人第4名在獲准件數方面,2005年我國人民向美國專利商標局申請獲准專利案件計5,993件,較上年減少16.84%,維持第3名,次於日本(31,834件)及德國(9,575件);向日本特許廳申請專利獲准案計2,305件,較上年增加24.33%,居所有外國人專利核准案件數第2名,次於美國;向歐洲專利局申請專利獲准案件計133件,較上年成長17.70%。 專利可反映一個國家或區域的創新活動,同時可展現該國或區域發揮知識力量,並將其轉換為有潛力的經濟產出的能力。專利獲准的條件是必須具新穎性、進步性及產業利用性,因此,專利的數量及其相關指標可說是衡量研究及發展(R&D)投入所獲產值的最佳工具。 根據智慧財產局最近發布之「2005年我國與美日歐專利申請暨核准概況分析」, 2005年我國向美國專利商標局、日本特許廳及歐洲專利局之申請與核准專利件數較往年雖有成長,但我國向美國申請專利件數已由2004年的居所有外國申請人之第3名下降為第4名,被南韓所超越,南韓的大幅成長值得關注。 美國依然是我國人民提出專利申請的主要國家,2005年我國人民向美國專利商標局申請專利案計16,617件,較上年增加10.36﹪,居所有外國人新申請案第4名。而南韓向美國專利商標局提出專利申請案自2003年之10,411件,成長至2004年之13,646件,2005年更以17,217件超越我國,攀至第3名。在日本方面,我國人民向日本特許廳申請專利每年超過3,000件,2005年排名第3,次於美國(9,177件)、韓國(5,990件);而在歐洲專利局方面,2005年我國人民共申請679件,有逐年增加趨勢,在亞洲國家中次於日本(21,461件)、南韓(3,853件)。