有鑑於許多歐盟國家為日漸高漲的健康照護成本所困,歐盟於Horizon 2020政策下陸續推動會員國合作以更有效益的創新採購方式進行健康照護計畫的推展,以降低健康照護預算的壓力,RELIEF計畫即屬其一。歐盟於2016年2月啟動RELIEF計畫,聯合義大利、西班牙、瑞典三國,目的在發展創新ICT解決方案以協助慢性病患透過自我管理方式舒緩慢性疼痛、能夠持續獨立生活。欲採購的ICT創新服務為目前尚不存在於市場上、仍需經研發之解決方案,實為針對慢性疼痛自我管理解決方案的「研發服務」,該計畫係採「前商業化採購(Pre-Commercial Procurement, PCP)」方式進行跨國公告招標。目前RELIEF計畫正在進行PCP準備階段之公開市場徵詢,除了透過2個月(今年11、12月)的公開線上問卷調查業者意見,另將以workshop形式舉辦三場公開市場徵詢會議。
RELIEF計畫另一重要目標就是透過此計畫以建立完整PCP流程,讓未來參與相關計畫的公部門能夠熟悉並妥善運用PCP流程及工具 。「前商業化採購」為歐盟廣泛創新戰略中所指出能協助公部門採購「研發服務」的特殊採購程序,以滿足尚未存在市場上、仍需經研發的技術性創新需求,此程序不包含對研發成果的商業化採購,亦不受政府採購法之規範,能夠從需求面刺激廠商創新研發,讓研發從一開始即以機關需求為核心。
RELIEF計畫劃分為PCP之準備階段以及執行階段。於準備階段會進行PCP招標文件準備、採購團隊的需求及現有技術分析、公開市場徵詢(Open Market Consultation, OMC);由於採購機關對其需求尚無具體的規格描述,必須經廣泛的市場意見徵詢與溝通以進一步定義,正在進行中的OMC將聚集採購團隊、潛在投標者(例如對健康照護、數位照護、病患賦權與互動性有鑽研之ICT業者)、終端使用者等,以廣蒐相關利害關係團體意見並進行充分互動溝通,作為執行階段的重要參考基礎。
PCP正式公告後的執行階段即區分為階段A「解決方案設計(Solution design)」(計半年)、階段B「原型開發(Prototype development)」(計半年)、階段C「商業化前開發:場域測試(Pre-commercial development: field test)」(計一年)。各階段將設定參與廠商應達成目標,以篩選出較符合需求者始得進入下一階段,以維持廠商間良性競爭,於階段C最後決標予研發成果最符合計畫需求之廠商(可能1家以上)。
歐盟目前的創新推動策略上PCP屬尚未被充分運用的工具,從該計畫的規劃可見準備階段對後續PCP執行階段的重要性,透過其示範可供政策規劃者為借鏡,運用創新採購驅動產業創新發展以更有效益解決社會與政府需求。
美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
何謂日本「大學共同利用機關法人」所謂「大學共同利用機關法人」,係指日本於《國立大學法人法》(国立大学法人法)中,以設置大學共同利用機關為目的,依該法之規定設置之法人。而所謂「大學共同利用機關」,依該法之規定,則係指有關在該法所列舉之研究領域內,為促進大學學術研究之發展而設置,供大學院校所共同利用之實驗室。日本利用大學共同利用機關法人之設置,將大型研發設施設備,以及貴重文獻資料之收集及保存等功能賦予大學共同利用機關,並將其設施及設備,提供予與該大學共同利用機關進行相同研究之大學教職員等利用。 目前登錄於日本文部科學省之大學共同利用機關法人包括了「大學共同利用機關人類文化研究機構」(大学共同利用機関法人人間文化研究機構)、「大學共同利用機關自然科學研究機構」(大学共同利用機関法人自然科学研究機構)、「大學共同利用機關高能量加速器研究機構」(大学共同利用機関法人高エネルギー加速器研究機構),以及「大學共同利用機關資訊與系統研究機構」(大学共同利用機関法人情報・システム研究機構)等四者。
日本資訊信託功能認定指引第二版日本於2018年6月公布「資料信託功能認定指引第一版」(情報信託機能の認定に係る指針ver1.0),期待藉此推動資料銀行發展,促進資料流通和利用。第一版指引係以資料銀行應具備之功能為中心,惟伴隨資料銀行業務發展,指引內除資料銀行基本功能外,亦應規範個人資料管理及向第三方提供資料之條件等內容,加上有論者認為第一版內有關資料銀行定義過於偏重功能描述,故總務省和經濟產業省於2019年1月起召開檢討會,重新檢討上開指引,最終於2019年10月8日公布「資料信託功能認定指引第二版」(情報信託機能の認定に係る指針ver2.0)。 第二版指引更新重點包括︰(1)修正資料銀行定義︰第一版指引僅強調資料銀行之功能,第二版則增加資料銀行之目的和資料銀行與個人間關係等內容;(2)重新定義並詳細說明資料種類和蒐集方法;(3)修正資料信託功能認定基準︰新增複數業者共同經營資料銀行,隱私保護對策以及確保資料銀行透明性和個人資料之自主控制等規定;(4)新增資料信託功能模範條款之應記載事項︰包括與限制行為能力人締結契約之程序,以及向第三方提供資料之條件等規定。為確保資料銀行透明性和個人資料之自主控制,第二版指引新增資料倫理審查會規定,要求資料銀行設置資料倫理審查會並定期向其報告,審查會則應就個人與資料銀行間契約、個資利用目的、向第三方提供資料之條件等事項提供建議。
日本金融廳全面整治虛擬貨幣交易所今年1月底日本Coincheck虛擬貨幣交易所爆出最大規模的駭客攻擊事件後,日本金融廳開始擴大調查國內虛擬貨幣交易平台營運狀況;3月8日首次對2家虛擬貨幣交易平台業者Bit Station及FSHO祭出為期一個月「勒令停業」之行政處分,前者主因係公司內部高階主管擅自挪用客戶資金,違反資金結算法中用戶財產管理與用戶保護措施規範;後者則係發現多筆高額交易時,網路系統並未進行用戶認證,公司亦未對員工進行內部培訓課程,違反資金結算法中關於用戶保護措施之規範。 同時,日本金融廳亦對Coincheck、Bicrements、GMO Coin、Tech Bureau,及Mr.Exchange等5家虛擬交易平台業者發布下令改善之行政處分,要求業者重新審視經營漏洞,限期建立有效且完善的風險管理系統、保護消費者機制、反洗錢與打擊資恐、資金管理系統、內部稽核與內部控制系統及用戶客服系統等,避免再度發生大型駭客攻擊事件。 另為能有效地建立虛擬貨幣交易市場管制規範,日本金融廳宣布成立「虛擬貨幣交易產業研究小組」,並由學者、金融業者及虛擬貨幣業者為主要成員,為將來虛擬貨幣市場可能面臨各種議題,研析相關監管政策及法制規範。 面對襲捲而來之虛擬貨幣交易經濟,日前法務部邀集金管會、內政部、央行、警政署、調查局等單位跨部會協商,並就管制面、執法面等持續進行研商;我國或可以日本該次事件為借鏡,於行政管制強度做適當之調整,尤其我國為亞太防制洗錢組織(APG)創始會員,而虛擬貨幣交易之匿名性,已成為反洗錢與反資恐之最大風險,隨著虛擬貨幣交易行為頻繁與發展態樣多變,日後對於虛擬貨幣交易之管制政策與範圍都將備受矚目。