澳洲新南威爾斯政府將推動創新採購與擴大監理沙盒適用範圍

  澳洲經濟核心所在之新南威爾斯州(首府雪梨)於2016年11月30日提出新南威爾斯創新戰略(The NSW Innovation Strategy),嘗試整合政府公部門、營利組織、非營利組織、教育及研究機構、社群或個人共同面對新的經濟、社會、環保議題之挑戰,藉由投入新型態的公共投資(the new forms of public investment),協助發明與創新者得以將他們好的創意轉換為成功的商品與服務。此外,不僅要發展未來產業創造工作機會,更要為此預先儲備能夠發揮高科技發展所需技能之人力資源。

  基此,新南威爾斯政府的創新戰略將著重於下列四項目標的達成:

(1)政府成為創新領導者(Government as an innovation leader)

(2)促進和運用研究發展(Fostering and leveraging research and development)

(3)未來技能養成(Skills for the future)

(4)創業者的家園(A home for entrepreneurs)

  同時,具體執行方法,在機制面上首先將啟動新南威爾斯創新窗口服務(NSW Innovation Concierge Service),與澳洲跨部會創新委員會協調運作,以確保重要意見並未遺漏,並且讓專家及決策者可考量到各種可能。

  而其他執行方法中,在法制面上影響較大者是在澳洲政府推動金融科技之監理沙盒制度的基礎上,嘗試擴大適用範圍不限於金融業之監理法令,可及於創新產業之法令試作。另外,也將針對採購規範進行修正,使政府與民間可以更便於運用政府採購促進產業發展與扶助中小企業,同時滿足政府提供公共服務之需求。更甚者,將推動對創新商品及服務的政府採購,藉由提供一定市場需求,穩定新創科技及業者之發展。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 澳洲新南威爾斯政府將推動創新採購與擴大監理沙盒適用範圍, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7690&no=645&tp=1 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
韓國提出一系列新創支援措施,以躋身全球四大新創強國為目標

  韓國中小企業暨新創事業部(Ministry of SMEs and Startups)於2021年8月30日發布「使韓國躋身全球四大新創強國之新創支持措施」(Venture Complementary Measures for Korea to Become One of the Top 4 Global Venture Powerhouses)。韓國總統文在寅指出,第二波創業爆發期為立基於西元2000年的第一波創業爆發期之上,如今韓國企業數量較當時已增加四倍,創投投資額更突破4兆韓元,顯示韓國新創的蓬勃發展潛力。為了能在政策面有效支持韓國新創能在第二波創業爆發期(Second Venture Boom)獲得所需的人才與資金,韓國中小企業暨新創事業部規劃三大面向、十二項任務作為推動韓國躋身全球四大新創強國之新創支持措施:   在打造韓國新創國際競爭力面向,推動股票選擇權改革、全面修正《促進新創事業發展特別措施法》並廢除落日條款、提高由政府對高科技新創公司貸款提供擔保的技術擔保(technology guarantee)額度上限至200億韓元、安排國際創投媒合價值1兆韓元的全球創投資金,以及配合全球關注ESG趨勢,以碳價值(carbon value)評估為基礎,提供價值5000億韓元的氣候應對保證(climate response surety)。   在擴大創業投資市場面向,包含創造私人基金投資的誘因及允許對特定智慧財產權進行投資、進行矽谷式的(Silicon Valley-type)創投基金監管、為早期新創公司引進一兆韓元的創投資金,以及提供創業加速器租稅減免等措施。而在多元化新創出場措施面向,則規劃新增技術創新併購擔保以及增加新創併購基金、給予更多併購租稅優惠,以及提供價值1000億韓元的出場基金等。   韓國中小企業暨新創事業部指出,在第一波創業爆發期中,韓國新創打下了良好基礎,為了把握第二波創業爆發期的發展機會,韓國政府將加強與民間合作,以發展新創來創造就業機會並作為國家發展動能。為了達成躋身全球四大新創強國的目標,中小企業暨新創事業部將全力協助人才與資金的募集,從而完善韓國的新創生態系資源。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

日本個人資料保護法修正案允許變更利用目的引發各界議論

  日本國會於本會期(2015年1月)中,進行個人資料保護法修正草案(個人情報保護法の改正案)的審議。修正草案研擬之際,歷經多次討論,IT總合戰略本部終於在2014年6月公布修正大綱,後於同年12月公布其架構核心。   本次修正,主要目標之一,是使日本成為歐盟(EU)所認可之個人資料保護程度充足的國家,進而成為歐盟所承認得為國際傳輸個人資料的對象國;為此,此次修正新增若干強化措施,包含(1)設立「個人資料保護委員會」;(2)明訂敏感資料(包含種族、病歷、犯罪前科等)應予以嚴格處理;(3)明訂資料當事人就其個人資料得行使查詢或請求閱覽等權利。   本次修正的另一個目標,則是促進個人資料利用及活用的可能性。2014年中,日本內閣府提出「有關個人資料利活用制度修正大綱」,提倡利用、活用個人資料所帶來的公共利益,並指出,過往的法規僅建構於避免個人資料被濫用的基礎,已不符合當今需求,且易造成適用上的灰色地帶,應透過修法予以去除;未來應推動資料的利用與活用相關制度,來提升資料當事人及公眾的利益。本次修正因此配合鬆綁,允許符合下述法定條件下,得變更個人資料之利用目的:(1)於個人資料之蒐集時,即把未來可能變更利用目的之意旨通知資料當事人;(2)依個人資料保護委員會所訂規則,將變更後的利用目的、個人資料項目、及資料當事人於變更利用目的後請求停止利用的管道等,預先通知本人;(3)須使資料當事人容易知悉變更利用目的等內容;(4)須向個人資料保護委員會申請。   目標間的兩相衝突,使得該案提送國會審議時,引發諸多爭議。論者指出:允許在特定條件上變更個人資料的利用目的,雖顧全資料利用的價值,但似不符合歐盟個人資料保護指令對於個人資料保護的基準,恐使日本無法獲得歐盟認可成為資料保護程度充足的國家,亦徹底喪失此次修正的最重要意義。

雲端運算所涉法律議題

  雲端運算(Cloud Computing),是一種基於網際網路的運算方式,用以共享軟硬體資源、依需求提供資訊給電腦和其他裝置。本質上其實就是分散式運算 Distributed Computing,其主要應用是讓不同的電腦同時協助你處理運算,故只要具備兩台以上電腦,讓他們之間互相溝通,協助您處理工作,就是基本的分散式運算。   雲端運算是繼1980年代大型電腦到用戶端-伺服器的大轉變之後的又一種巨變。使用者不再需要了解「雲端」中基礎設施的細節,不必具有相應的專業知識,也無需直接進行控制。雲端運算概念下描繪了一種基於網際網路而新增加的新興IT服務、使用和交付模式,藉由網際網路來提供各種不同的資源、服務功能而且經常是虛擬化的。 「雲端運算」供應模式以及實用定義如下: ‧ 軟體服務化 (SaaS):透過網際網路存取雲端的應用程式 (例如:Salesforce.com、趨勢科技 HouseCall)。 ‧ 平台服務化 (PaaS):將客戶開發的應用程式部署到雲端的服務 (例如:Google AppEngine 與 Microsoft Azure)。 ‧ 基礎架構服務化 (IaaS):有時亦稱「公用運算」(Utility Computing),意指處理器、儲存、網路以及其他資源的租用服務 (例如:Amazon 的 EC2、Rackspace 以及 GoGrid)。   雲端運算服務所涉及的法律議題相當廣泛,包含隱私權、個人資料保護、資料管轄權、契約責任、智慧財產權保護與營業秘密等。在隱私權問題方面,使用者的隱私或機密風險,乃至權利義務狀態會因為雲端供應商所提供之服務與隱私權政策(privacy policy)而有顯著不同,也可能因為資訊型態或雲端運送使用者類型不同而有差異。在雲端運算服務契約方面,發生資訊安全事件導致資料失竊或毀損時,供應商責任或注意義務如何於契約中合理分配風險,亦是契約方面重要議題。

TOP