中國大陸科技部開始進行首批國家科技成果轉移轉化示範區建設計畫

  於2016年10月14日,中國大陸科技部為落實國務院於5月9日發布之《促進科技成果轉移轉化行動方案》中,有關大力推動地方科技成果轉移轉化,並開展區域性科技成果轉移轉化試點示範的要求,開始啟動在河北以及寧波,兩個科技成果轉移轉化示範區的建設計畫。

  中國大陸推動國家科技成果轉移轉化示範區之目的在於推動科技成果轉移轉化工作,以期能有助於完善區域科技成果轉化政策環境,並且提升區域創新之能力;示範區的建設重點將在於完善科技成果轉化服務體系、建設科技成果產業化載體、開展政策先行先試等方面開展工作,進行地方的創新驅動發展。

  為此,中國大陸科技部並印發了《科技部關於建設河北•京南國家科技成果轉移轉化示範區的函》、《科技部關於建設寧波國家科技成果轉移轉化示範區的函》兩份政策文件,其中河北•京南示範區的重點在於配合北京、天津,以及河北的區域協同發展,充分發揮跨區域輻射帶動作用,並且承接北京及天津的創新要素外溢轉移,以及與河北產業創新需求進行對接。而寧波示範區將則以科技成果轉化對產業和企業創新發展的對接為核心戰略,發展以企業為主體的科技成果轉移轉化示範區域。並以這兩個示範區的測試來探索模式、累積經驗。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 中國大陸科技部開始進行首批國家科技成果轉移轉化示範區建設計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7691&no=67&tp=1 (最後瀏覽日:2025/08/23)
引註此篇文章
你可能還會想看
美國司法部針對與集管團體的著作權合意判決提出修正解釋

  美國司法部於今年六月底,就1941年實施至今,與「美國詞曲作者及出版商協會」(American Society of Composers, Authors and Publishers,ASCAP)及「廣播音樂公司」(Broadcast Music Incorporated,BMI)間的合意判決(Consent Decree),提出了新的解釋。司法部認為,在維護市場自由競爭的價值下,應該允許部分詞曲著作人授予全部的歌曲權利給單一集管團體。   在當今閱聽大眾習慣變化快速的年代,閱聽服務種類多元,使用人很有可能因難以取得全部歌曲權利而陷入侵權風險。司法部此舉可增進使用者授權便利性與完整性。   然而,新的解釋引來正反兩面不同的評價,部分數位音樂業者(如Pandora Media, Inc)認為,如此可提升消費者享受服務的便利性,亦可避免大型集管團體的壟斷與對於音樂授權市場的價格控制。反對聲浪則表示,如果單一權利人可授權全部的音樂著作權利給個別集管團體,會增加授權複雜程度,亦將造成集管團體彼此間授權費用分攤上的困擾;並且,大型音樂出版業者(如SONY/ATV)很有可能撤回對於集管團體的概括授權,這對於消費者來說無異是增加了取得授權的困難度,只是將壟斷力量由集管團體轉移至服務提供業者本身而已。亦有論者指出在授權透明機制建立以前,過度自由的授權模式將增加整個音樂視聽產業的內部管制負擔。   我國對於集管團體與音樂服務業者間關係,恐亦存在市場力量不均衡的問題,政府或應思考如何於「授權市場的公平競爭」、「社會大眾的閱聽權利」,以及「音樂產業的發展方向」三者之取,取得政府、人民與產業三贏的結果。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

美國先進製造國家計畫辦公室於今年(2015) 6月10日研提現況檢討報告與相關政策資料

  為檢視國內先進製造業復甦與計畫推進之近況,美國先進製造國家計畫辦公室(Advanced Manufacturing National Program Office, AMNPO)於今年(2015) 6月10日研提現況檢討報告與相關政策資料,該項報告主要可歸結「國內產業現況」、「計畫執行成效」與「法制組織」等重要面向 ,茲就該項報告之重點摘要如下: (一)國內先進製造產業現況檢視:   報告指出美國目前正喪失在先進產品領域全球領導地位,在進出口貿易呈現嚴重赤字,雖近年致力於先進製造之資源整合與共同研發等措施,然而,觀察基礎科研端到市場端仍存有落差。 (二)先進製造領域已設立45個研發創新中心:   研發創新中心為產業與學研機構共構之「區域應用性組織」,主要由學術研究聯盟、企業和區域管理機構所組成專注於扶持區域具經濟優勢之新興技術研發,發展在地技術能量。先進製造領域,截至目前為止,已設立45個研發創新中心。除透過研發創新中心之扶持外,另可透過中心之設立選定各該重點關鍵技術發展,間接培育美國各區域之先進製造技術之專業領域。美國境內研究型大學或非營利組織皆得提案申請,而獲選之區域創新研究機構可獲得聯邦政府5至7年資金補助,政府欲透過補助模式,扶持區域新創機構之自主運作與發展。而於七年發展階段後,該機構將形成財政自主,由該機構之行政委員會主導研發資金運用與分配。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

Regolith的試煉:太空物質私有化

  美國國家航空暨太空總署(National Aeronautics and Space Administration,NASA)向企業購買月球Regolith(岩屑層)與岩石物質,並於2020年9月提出《月球Regolith採購工作績效聲明》(Lunar Regolith Purchase Request Performance Work Statement)。惟月球的物質,是否可以開採?   依據《各國探索與應用外太空、月球暨其他天體之活動管理原則條約》(Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies)第2條,外太空、月球與其他星體,非任何國家可藉由使用、占領與其他方式,或應用國家經費,而宣稱擁有主權。針對NASA的月球物質採購計畫,是否合乎該條約?NASA署長Jim Bridenstine指出,Artemis計畫增加商業參與,要求企業蒐集小型的月球「塵埃」(dirt),或月球表面的岩石。Jim Bridenstine並認為此項提案,充分遵守該條約與其他國際義務。申言之,NASA認為月球之物質,具有私有化之可能性。   為採購企業蒐集之月球物質,NASA擬定《月球Regolith採購工作績效聲明》,規範企業的義務為:1、自月球表面蒐集50克至500克的Regolith或岩石物質;2、提供NASA蒐集與物質的影像,該資料足以識別蒐集地點為月球表面;3、就地(in-place)移轉NASA蒐集物質的所有權,此些物質並將成為NASA得以使用的私有財產(sole property)。企業得以決定在月球表面的任何地點蒐集,且無須評估蒐集的材料;NASA係採購蒐集狀態(“as-collected” condition),並有權利獨立確認企業蒐集物質的聲明。亦即企業的任務為採購物質,並提出證明;對月球物質的評估,則由NASA為之。   企業對NASA採購月球物質之履行,須於2024年以前完成;NASA對契約的獎勵,並不以月球物質蒐集的數量為基準。NASA對企業採購月球物質的支付依據:10%來自於企業完成NASA概念審查的提案;10%係企業為此蒐集任務,而由企業系統發射航空器至太空;80%為達成移轉NASA太空物質的所有權。另外,機器人登陸器(robotic lander)的設計與建構,並非屬NASA向企業徵集太空物質之內容。換言之,NASA之採購計畫並非強調太空物質之蒐集數量,而係著重於太空物質所有權之移轉。   綜上所論,NASA向企業採購月球Regolith與岩石物質,並以所有權之移轉為主,開啟太空物質私有化的可能性。

TOP