何謂「專利審查高速公路」?

  「專利審查高速公路(Patent Prosecution Highway, PPH)」係指專利審查機關加速專利審查之程序。藉著各國專利局間合約之簽署,當某專利申請在第1間專利局取得至少1請求項(claim)之核准後,申請人得請求加速第2間專利局就該已經核准之請求項之審查程序。申請人得縮短取得專利之期間,參與之專利局亦得藉著利用第1間審查之專利局已有資料,降低審查工作之負荷。但此並不代表於第1間專利局獲准之專利之發明於第2間專利局亦會當然獲准。

  台灣目前已與美國、日本、韓國及西班牙簽署備忘錄進行專利審查高速公路之計畫,日後專利申請人得利用此機制,縮短取得專利之時程,專利局的審查速度亦會加快。根據智財局之統計,至2016年6月底,平均首次OA(office action)期間(自PPH文件齊備至首次OA平均期間)為57.6天,平均審結期間(自PPH文件齊備至審結平均期間)則為136.6天。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「專利審查高速公路」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7706&no=67&tp=5 (最後瀏覽日:2026/02/05)
引註此篇文章
你可能還會想看
英國通過《大英能源法》,設立國營大英能源公司推動淨零與能源安全

面對能源轉型與全球淨零排放目標挑戰,英國於2025年5月15日通過《大英能源法》(Great British Energy Act 2025),法規授權內閣大臣(Secretary of State)指定一間由王室全資持有且依《2006年公司法》(Companies Act 2006)設立之股份有限公司為「大英能源公司」(Great British Energy, GBE)。 根據法規,GBE核心任務包括:推動潔淨能源發展、改善能源效率、降低碳排放、確保能源供應安全,並促進公平供應鏈(包含防止奴役與人口販運),GBE經營模式強調地方參與,須透過具社會效益之專案推動轉型工作。 為支持其營運,法規授權內閣大臣可對GBE提供各種形式的財務援助,包括補助、貸款、擔保、收購股份或資產等。此外,內閣大臣亦有權對GBE發布具拘束力之政策性指示(Directions),並需針對其營運擬定「策略優先事項」(strategic priorities),以成為GBE業務規劃之依據。惟上述優先事項不得涉蘇格蘭、威爾斯或北愛爾蘭議會專屬權限事項,除非經當地部門同意。 為確保公共資源使用之透明性,GBE必須每年向內閣大臣提交財報,內閣大臣再將財報提交國會。同時GBE須每五年接受一次獨立人士(independent person)的績效審查,獨立人士再將績效報告提交國會。法規亦要求GBE應持續檢討其業務對英國永續發展之影響,以確保符合國家長期發展方向。 本法適用於英格蘭、威爾斯、蘇格蘭及北愛爾蘭,並自2025年5月15日正式生效。

美國參議院司法委員會通過草案 擬規範學名藥給付延遲訴訟和解協議

  為禁止藥廠間持續利用「給付遲延和解協議」(pay-for-delay settlements)來延遲低價學名藥品上市,美國參議院司法委員會(Senate Judiciary Committee),日前已表決通過由參議員Herb Kohl 所提之「保障低價學名藥品近用法草案」 (Preserve Access to Affordable Generic Drugs Act 【S. 369】),並已提交兩院,進行後續之討論及審查。而就該新法草案內容,大致上,是為解決品牌藥廠因採逆向給付(Reverse Payment)和解協議以阻礙學名藥品上市時,將帶來長期用藥與醫療成本增加等問題之目的而設。   而就前述所提及之訴訟協議模式來說,原則上,在品牌藥商為解決藥品專利訴訟問題之前提下,透過給付學名藥品廠商數百萬美元報酬(即補償金)之方式,來做為換取學名藥廠同意並承諾願將該公司學名藥產品延緩上市條件之對價,並藉此以保存系爭藥品原先既存之市場利潤。而對此類將嚴重影響大眾日後近用低價藥品權益之和解協議,美國聯邦貿易委員會(Federal Trade Commission;簡稱FTC)業已於近期內,作出完整之分析報告,其指明,若政府能終止此類和解協議,除將可於往後十年間,可為聯邦政府減低近120億美金之預算支出外;同時,亦可為民眾節省下近350億美金之醫療成本。   此外,由於受FTC該份分析報告之影響,於先前司法委員會之表決過程中,委員對此類訴訟和解所採之態度,也產生重大轉變,亦即,其從最初肯認可提出充分證據並證明將不會損及正常藥廠間競爭之和解協議,轉而改為,應嚴格限制此類訴訟和解協議之產生;同時,為嚇阻藥廠間給付遲延訴訟協議之達成,於此項新法草案中,亦新增相關處罰之規定。   最後,參議員Kohl強調:「一旦此項草案通過,除將可終結過往那些罔顧消費者權益之不當競爭行為外;從長期影響之角度來看,該法案亦可為公眾省下每年約數十億美金之用藥花費」。。

日本經產省發布《促進資安攻擊受害資訊共享檢討會最終報告書》,以加速資安情資共享

日本經濟產業省(下稱經產省)於2023年11月22日發布《促進資安攻擊受害資訊共享檢討會最終報告書》(サイバー攻撃による被害に関する情報共有の促進に向けた検討会の最終報告書),主張共享資安攻擊受害資訊,掌握資安攻擊全貌,防止損害範圍擴大。經產省提出具體建議如下: 1.促進各專門組織間之資訊共享:藉由專門組織間的資訊共享,及早採取適當因應措施,避免損害持續擴大,並降低受害成本。所謂專門組織包含資安廠商、資安監控中心(Security Operation Center, SOC)營運商、防毒廠商,與依法令成立從事資安事件諮詢與分析之非營利組織,例如:一般社團法人日本電腦網路危機處理暨協調中心(一般社団法人JPCERTコーディネーションセンター),以及一般財團法人日本網路犯罪對策中心(一般財団法人日本サイバー犯罪対策センター)等。 2.共享無從識別受害組織之資訊:為加快資訊共享,經產省建議將資料去識別化至無從識別受害組織之程度,即可不經受害組織同意而共享資訊。 3.提出《攻擊技術資訊處理與活用指引草案》(攻撃技術情報の取扱い・活用手引き(案)):為提升專門組織共享資訊成效,經產省於指引中彙整受害組織資料去識別化作法,以及各專門組織間共享攻擊技術資訊之具體策略。 4.於保密協議中加入免責條款:經產省建議於受害組織與專門組織簽訂之保密協議中,加入專門組織免責條款,使專門組織具有利用或揭露攻擊技術資訊裁量權,對於利用或揭露資訊,致生受害組織被識別等損害時,非因故意或重大過失不須負擔法律責任,以利推動資訊共享。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP