「專利審查高速公路(Patent Prosecution Highway, PPH)」係指專利審查機關加速專利審查之程序。藉著各國專利局間合約之簽署,當某專利申請在第1間專利局取得至少1請求項(claim)之核准後,申請人得請求加速第2間專利局就該已經核准之請求項之審查程序。申請人得縮短取得專利之期間,參與之專利局亦得藉著利用第1間審查之專利局已有資料,降低審查工作之負荷。但此並不代表於第1間專利局獲准之專利之發明於第2間專利局亦會當然獲准。
台灣目前已與美國、日本、韓國及西班牙簽署備忘錄進行專利審查高速公路之計畫,日後專利申請人得利用此機制,縮短取得專利之時程,專利局的審查速度亦會加快。根據智財局之統計,至2016年6月底,平均首次OA(office action)期間(自PPH文件齊備至首次OA平均期間)為57.6天,平均審結期間(自PPH文件齊備至審結平均期間)則為136.6天。
本文為「經濟部產業技術司科技專案成果」
自特斯拉(Tesla)推行Autopilot(此於特斯拉之繁體中文官網譯作自動輔助駕駛)以降,其原先宣稱可免手動(Hands free),但經美國國家公路交通安全管理局(National Highway Traffic Safety Administration,NHTSA)指摘特斯拉前述宣稱可能使駕駛人注意力渙散而發生事故,似乎影響近年來特斯拉對於其自動輔助駕駛系統之論調,而改要求駕駛人即便開啟該系統仍須將手放置於方向盤上。除了前揭特斯拉於車輛銷售(廣告)資訊所生的爭議外,日前2020年7月間德國慕尼黑第一地方法院(Landgericht München I)之合議庭的判決,認定特斯拉於其車輛(Model 3)之銷售(廣告)標示資訊的整體,以及原告競爭中心(Wettbewerbszentrale)所分別主張之內容,均屬不正當競爭防制法(Gesetz gegen den unlauteren Wettbewerb,UWG)第5條第1項第2句第1款之誤導性商業行為(Irreführende geschäftliche Handlungen,或譯作引人錯誤之交易行為)。 本件之爭點核心在於特斯拉現行車輛既有配備之Autopilot系統,以及消費者可自行選購之Volles Potenzial für autonomes Fahren(德文直譯:具備完全自動駕駛潛力,而特斯拉之繁體中文官網譯作全自動輔助駕駛)系統等用詞,因其等涉及車輛功能與設備之決定性概念和資訊,則與現行「車輛駕駛輔助系統」(Fahrassistenzsystem)存有落差,進而導致消費者理解與實際情況不一致之情形。 法院認定理由在於不論特斯拉之Autopilot或Volles Potenzial für autonomes Fahren等系統,均無法達到毋須人為介入行駛的情境,即便其於官網上有另行標註目前該等系統功能有限,仍須駕駛人主動監控所有行駛環境等,但因該等內容說明不夠透明與清晰,而仍無法排除其等資訊具有誤導性,故特斯拉使用Autopilot等詞以及其他暗示車輛技術上能完全自主(vollkommen autonom)等用語,將引起消費者錯誤認知其可在德國的道路上運行完全自主之自動駕駛系統(註:此部分似係指SAE標準等級5之自動駕駛系統,然德國道路交通法目前僅開放運行等級4以下之自駕系統)。不過該判決結果仍可上訴。
美國司法部命加州柏克萊大學完備無障礙網站,確保身心障礙人士之數位人權針對「全國聽障協會」(National Association of Deaf, NAD)於2014年對於加州柏克萊大學提供之免費線上課程、會議、講座、表演和其他影音檔案未內建隱藏式字幕(closed captioning),向美國司法部申訴,該校違反美國身心障礙者法Americans with Disabilities Act, ADA)第二章,即收編至美國統一法典(U.S.C.)第42章第12131至第12134條,關於「提供公共服務的實體(entity)應將其服務平等地提供他人近用」相關規定,包括州行政機構、法院、立法機關、城市、郡、學校、社區大學等實體,須確保身心障礙者獲得平等機會使用州和地方政府的服務或參與其活動。 美國司法部歷經八年調查後,最終與加州柏克萊大學達成行政協議(consent decree),要求加州柏克萊大學應定期回報無障礙網站建置進度、回應公眾無障礙網站需求、內部員工相關教育訓練、定期請第三方稽核單位測試學校各平臺的無障礙網站是否達「全球資訊網協會」(World Wide Web Consortium, W3C)發布的「無障礙網站指南」2.0版(Web Content Accessibility Guidelines, WCAG 2.0)AA等級技術標準。自該協議生效日起,加州柏克萊大學以下相關網路平臺上之影音檔案,均需內建隱藏式字幕: 一、大學官網(http://www.berkeley.edu)及公眾可瀏覽且由加州柏克萊大學管理的任何相關子網域; 二、大規模線上公開課程(MOOC)平臺「UC BerkeleyX」; 三、由第三方平臺(如Apple Podcasts或Spotify)託管,加州柏克萊大學管理的所有podcast頻道或帳戶; 四、由第三方平臺(如YouTube)託管,加州柏克萊大學管理的所有影音頻道或帳戶。 從行政協議之協調方向及結果來看,加州柏克萊大學除實體環境外,和該環境具聯繫關係之網站也需要符合ADA無障礙網站規定,使得多元族群均有平等接觸社會服務和活動的機會。在數位經濟時代,各式網路活動活絡之今日,網路等線上虛擬環境與實體公共設施的無障礙同等重要;線上與線下之人權皆須獲得同等保障,亦係數位人權之真諦。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。