何謂德國KOINNO創新採購中心?

  德國KOINNO創新採購中心是由德國經濟暨能源辦事處(Bundesministerium für Wirtschaft und Energie)轄下的倉儲管理、採購與物流經濟協會(Bundesverband Materialwirtschaft,Einkauf und Logistik e.V, BME)所執掌,該協會主要任務為關於政府採購與各領域的物流管理的研發成果技術移轉、促進職業與終生教育的補助與經驗交流,目的在於創造未來趨勢、經濟發展與鼓勵創新。而KOINNO創新採購中心的成立宗旨即是持續提供政府採購的創新來源,並引導具有創新元素的政府採購實踐為成功經驗與最佳練習。

   其中政府採購方面,BME在2004年建立該平臺,其功能為提供使研發成果能最佳實踐的對話交流、創造未來發展趨勢與創新、將研發成果技轉給採購機關與提升政府採購的價值。德國慕尼黑國防大學的公共採購法學與管理研究中心(Forschungszenturm für Recht und Management öffentlicher Beschaffung der Universität der Bundeswehr München,FoRMöB)是KOINNO的合作夥伴,同時也是德國唯一以企業經營與法學觀點分析公共採購問題的跨領域研究中心。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 何謂德國KOINNO創新採購中心?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7707&no=64&tp=5 (最後瀏覽日:2025/12/23)
引註此篇文章
你可能還會想看
英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

OECD將就第一支柱金額A召開公開諮詢會議

  OECD(經合組織)於2022年9月12日巴黎時間12時至17時召開第一支柱金額A(Amount A of Pillar One)的公開諮詢會議。蓋2021年10月,共137個成員同意自2023年啟用雙柱計畫(Two-Pillar Plan),OECD為提供能協助各國制訂相關內國法之「示範規則(Model Rules)」,已多次並持續公開徵詢意見。   其中,作為第一支柱的全球利潤分配稅制,係針對全球收入逾200億歐元且稅前淨利逾10%的大型跨國企業,定其逾10%的利潤為「剩餘利潤」,並取25%依關聯性(Nexus)重新分配至價值創造地,此剩餘利潤即本次會議欲討論之金額A。   一旦劃歸金額A將適用高達25%之稅率,故2022年7月11日,OECD所公布第一支柱的「進度報告(Progress Report)」,即針對如何計算大型跨國企業之全球總所得、如何量化系爭所得為金額A之稅基、如何定關連性原則以決定各價值創造地對金額A徵稅權之有無及高低、稅捐競合時如何避免對金額A造成雙重課稅,以及各該要件之定義等核心問題,列出7項標題(Title)作為本次會議討論重點。   然而,除了金額A徵稅權之跨國分配所涉利害關係錯綜複雜外,因各國稅制與發展不一致、美國對雙柱計畫之態度似有保留、歐盟成員國迄今仍無法達成一致共識,以及烏俄戰爭引發的通貨膨脹等各種內外因素,均為第一支柱示範規則之訂定,甚至雙柱計畫之實施增加了不確定性。準此,本次會議重要性不言可喻,值得我國持續注意。

中國大陸法院認定AI創作可受著作權法保護

中國大陸法院認定AI創作可受著作權法保護 資訊工業策進會科技法律研究所 2023年12月05日 近期生成式AI的工具運用,無論是生成文字的ChatGPT、生成圖像的Midjourney及生成影片的Pictory,技術一日千里,蓬勃發展;其應用已逐漸進入一般人的生活領域網,而且產生AI產出的侵權爭議,滋生運用AI創作的生成內容是否可主張著作權之疑義。我國經濟部智慧財產局於今(112)年6月以經授智字第11252800520號令 函指出--「AI利用人如係單純下指令,並未投入精神創作,由生成式AI模型獨立自主運算而生成全新內容,該AI生成內容不受著作權法保護。」採取否定見解 。不過其前提係「單純下指令,並未投入精神創作」,適於日前中國大陸北京互聯網法院於11月27日以(2023)京0491號民初11279號民事判決 認為如可認定屬「非機械性智力成果」,運用AI生成的圖片仍可受著作權保護。 壹、事件摘要 本案起因於原告將其使用開放原始碼的Stable Diffusion以輸入提示詞的方式,生成「春風送來了溫柔」之少女人像圖,並發布於網路平台。原告於事後發現,被告將該圖原有的原告署名浮水印(平台所發予的用戶編號)截除,並使用於其在網路上發布的文章中使用該圖做為插圖。原告因此提起姓名表示權與網路傳輸權的侵權訴訟。 被告主張系爭圖片具體來源為網路取得,已無法識別來源與浮水印,並不能確定原告是否享有圖片之權利;而且其所發布的主要內容為原創詩文,並非系爭圖片,亦未做為商業用途,並無侵權故意。 原告於本案中提出生成過程的影片佐證資料,北京互聯網法院認定呈現下列具體生成(取捨、選擇、安排與設計)步驟: 一、選擇前述軟體程式提供的模型,初步決定畫面最終生成的可用素材,決定作品的整體風格、類型。 二、為展現一幅在黃昏的光線條件下具有攝影風格的美女特寫所需,輸入有關類型、主體、環境、構圖、風格的提示詞,包括:「超逼真照片」與「彩色照片」類型;「日本偶像」主體並詳細描繪臉部皮膚、眼睛、辮子等細節;「外景」、「黃金時間」與「動態燈光」之環境提示;「機前瀏覽(眼看鏡頭)」、「酷姿勢」為構圖提示;「底片紋理、膠卷仿真」等風格提示。另並進行輸入反向指令提示,包括:繪畫、卡通、動漫等要求,以避免此類風格出現於生成內容。 三、進行相關參數設定,以及多次試驗的調整,包括採樣方法、清晰度、圖形比例等不同參數設置。 貳、重點說明 北京互聯網法院根據原被告的陳述與提供的證據資料,認定原告的AI生成圖構成作品(受著作權保護),且原告享有該作品之著作權: 一、法院首先提出四個認定是否構成作品的判斷要件:1.是否屬文學、藝術、科學領域;2.是否具有獨創性(原創性);3.是否具有一定的表現形式;4.是否屬於智力成果。同時認為本案須審酌的重點在於獨創性與是否屬於智力成果。 二、關於「是否屬於智力成果」,法院認為從原告構思圖片到最終圖片選定為止,原告進行了一定的智力投入,例如設計人物的呈現方式、選擇提示詞、安排提示詞的順序、設置相關的參數、選擇符合預期的生成內容,已具備本要件。 三、至於「是否具有獨創性」,法院認為非有智力投入的都具有獨創性,如「按照一定的順序、公式或結構完成的作品,不同的人會得到相同的結果」,則屬「機械性的智力成果」,並不具有獨創性。但運用AI生成過程若能「提出的需求與他人越具有差異性,對畫面元素、布局構圖描述越明確具體」就越能呈現人作者的個性化表達。因此,法院認定原告雖然AI創作沒有使用畫筆,也與過去使用繪圖軟體不同,但原告對於人物及其呈現方式透過提供進行設計,並透過反覆的修改參數、調整修正,這過程呈現原告的審美觀,而亦可見不同人使用該AI工具可以自行生成不同的內容,故該作品「係由原告獨立完成、體現了原告的個性化表達」。 四、針對原告是否享有該圖作品的著作權,法院採肯定看法認為: 1.雖原告使用AI工具的行為類如委託他人設計,於委託時該是受託人為創作人,但委託與AI工具區別在於委託人具有自主意志,AI工具本身並沒有,不是自然人或法人等民事主體,依法(中國大陸著作權法)該AI工具本身無法成為作者而享有著作權。 2.事實上仍是人以工具進行創作,而工具的設計者亦已於GitHub論壇的授權條款中揭示該工具的授權人並不對使用者所生成的內容主張權利。 3. AI工具的設計者本身並沒有創作該圖的意願,亦無預先設定後續生成內容,未參與創作的生成過程,其訓練雖然是投入相當大的心力,但投入的是在工具的創建而非特定內容的生成。 參、事件評析 本案最終由原告獲得勝訴,法院認定被告侵害其姓名權與公開傳輸權,雖然法院認為使用AI工具的行為類如委託他人設計,於委託時該是受託人為創作人,但也認為AI工具本身並沒有自主意志,不是可享有著作權利的主體,依法(中國大陸著作權法)該AI工具的使用本質仍是人以工具進行創作,而工具的設計者並沒有生成內容的意思與投入,故應由多次修改呈現其個人表達念的使用者取得著作權。本文認為可以從此判決中獲得下述啟示: 一、對初次生成結果進行修改指令是取得原始性的重點:現今AI工具的使用,如要求程度不高,其實只須簡單的指令,例如生成一個xx的圖片,即可產生一張可用的圖片,但此時AI生成的內容僅是「按照一定的順序、公式或結構完成的作品,不同的人會得到相同的結果」,屬「機械性的智力成果」,將不具有獨創性。 二、反覆修改、調整參數呈差異化,即便是AI生成亦獲保護:運用AI生成過程應力求與他人的使用具有差異性,對畫面元素、布局構圖描述越明確具體,越能呈現人個性化表達,始能取得著作權保護。而反覆的修改參數,例如視線角度、光影呈現方式、表情姿勢要求等圖片的細節呈現,強化呈現個人化的思想、表達、創作投入,即可獲得著作權保護。 三、AI生成世代的著作保護更須重視創作歷程的存證:本案原告取得勝訴的重要關鍵,在其於本案中提出生成過程的影片佐證資料,證明其使用過程的需求(在黃昏的光線條件下具有攝影風格的美女特寫)、取捨(輸入反向指令提示,包括:繪畫、卡通、動漫等)、選擇(「日本偶像」主體並詳細描繪臉部皮膚、眼睛、辮子等細節)、安排與設計(「機前瀏覽(眼看鏡頭)」、「酷姿勢」等構圖)步驟呈現其多次試驗的調整的事實證明,若無此佐證影片,單依生成結果難以證明其創作投入,訴訟結果可能會變成敗訴。 四、AI生成工具的使用須注意生成結果的權利歸屬約定:即便本案針對原告使用AI生成工具的生成結果可受著作權保護,但原告是否享有該圖作品的著作權,法院再次確認工具的設計者的授權條款並沒有對使用者所生成的內容主張權利,若該條款約定使用者不依法可享有的內容權利,使用者的權益將受影響,是必須特別要注意的事情。 如同北京互聯網法院在判決中提及的,在照相機出現之前,人們需要高度的繪畫技術才能再現物體形象,但即便出現智慧型手機亦不影響我們運用它產生有獨創性的作品而構成攝影著作。可預見的未來AI技術會越發達,人的投入會越少,但這並不影響著作權制度鼓勵作品創作的立法意旨,只要有創作性的投入,即便只是反復的指令下達,也仍是受著作權法保護的獨特的個人作品。 [1]詳見臺灣智慧財產局頒布函釋說明生成式AI之著作權爭議,理慈國際科技法律事務所,https://www.leetsai.com/%E8%91%97%E4%BD%9C%E6%AC%8A/interpretation-released-by-taiwans-ipo-to-clarify-copyright-disputes-regarding-generative-ai?lang=zh-hant,最後瀏覽日期2023/12/04。該文提及的智慧財產局令函,本文未能於於該局之著作權函釋系統中檢索到。 [2]該局111-10-31以電子郵件1111031號令函提及有關人工智慧(AI)的創作,如是「以人工智慧為工具的創作」,也就是人類有實際的創意投入,只是把人工智慧(例如:繪圖軟體)當作輔助工具來使用,在這種情形依輔助工具投入創作者的創意而完成的創作成果仍可以受著作權保護,著作權則由該投入創意的自然人享有,除非有著作權法第11條及第12條之情形。 [3]判決全文詳見https://mp.weixin.qq.com/s/Wu3-GuFvMJvJKJobqqq7vQ,最後瀏覽日期2023/12/04。

英國期望透過資料使用與近用法案修正案,強化數位證據資料之可信任性

英國於2024年11月提出資料使用與近用法案(Data (Use and Access) Bill)修正案,其修正內容包含強化數位證據資料之可信任性。 根據英國數十年來的法院判決,可以觀察到英國法院信任電腦自動產出的資料,因此除非當事人提出反證,否則將推定電腦證據是可信賴的。然而,該見解導致英國爭議案件「郵局Horizon系統出錯案」的發生,亦促使資料使用與近用法案修正案的提出。 資料使用與近用法案修正案於第132條新增與數位證據相關的條款,同條第1項規定由電腦、裝置或電腦系統產生的數位證據,符合下列規定者,於訴訟程序中可以作為證據。 a、 數位證據以及產生數位證據或衍生數位證據之系統之可信任性未受質疑。 b、 法院確信無法合理地挑戰系統之可信任性。 c、 法院確信數位證據源自可信任的系統。 此外,同條第4項規定第1項第c款所指之可信任的系統,應包括適用於系統運作的任何指示或規則,以及為確保系統中保存的資料的完整性而採取的任何措施。 綜上所述,英國逐漸扭轉過去英國法院認為由電腦自動產生的資料具有可信任性之見解,並透過資料使用與近用法案修正案修正對於數位證據的認定,未來在涉及數位證據的案件中,檢辯雙方需要證明作為數位證據的資料完整性具有可信任性。 我國企業如欲強化數位資料的可信任性,可參考資訊工業策進會科技法律研究所創意智財中心所發布之重要數位資料治理暨管理制度規範(EDGS),建立並落實數位資料管理流程,除可確保數位資料的完整性及正確性具有可信任性,亦可提升法院採納數位資料作為證據之可能性。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}

TOP