IBM Watson Health與FDA合作研究區塊鏈技術之醫療運用

  根據專利資料庫公司IFI CLAIMS公佈2016年美國專利統計報告,IBM以8,088件專利再度蟬聯冠軍,其中多著重在人工智慧(artificial intelligence)、認知運算(cognitive computing)、及雲端(cloud)等技術領域,也有健康醫療相關專利。

  近期IBM Health與美國食品藥品管理局(U.S. Food and Drug Administration)展開兩年期之合作研究,透過區塊鏈技術(blockchain)以安全且去中心化的方式進行數據共享,如:交換電子病歷、臨床試驗、基因數據、甚至過去難以取得的病患行動與穿戴裝置數據及物聯網(Internet of Things)數據等。

  傳統上病患的病歷資訊存放於各診療單位或醫療機構,造成資訊管理效率及互通性較低,在區塊鏈技術的架構下,有效率的將大量且多樣的醫療數據進行彙整,並藉審查追蹤紀錄以防止竄改,提升病歷數據傳輸管理的可靠性及安全性。在如此多元化的醫療數據共享環境下,有助於醫療診斷、更將能促進產業發展。

  此外,過去病患穿戴裝置所測得的日常生理數據,不管在數據取得、或將該些數據應用至臨床診斷上皆存有許多問題,如今區塊鏈技術將能提高物聯網數據資訊之整合性。依調查顯示,預計有80%新創組織採用區塊鏈技術於物聯網數據管理與應用上。

  其他應用商機更包括居家監控、慢性疾病管理、藥物整合(medication reconciliation)及供應鏈管理等。IBM預估,至2017年底將會有16%的健康醫療機構採用以區塊鏈技術為架構的管理工具,並預測十年內採用比例將達72%。

本文同步刊登於TIPS網站(https://www.tips.org.tw)」

相關連結
你可能會想參加
※ IBM Watson Health與FDA合作研究區塊鏈技術之醫療運用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7714&no=64&tp=1 (最後瀏覽日:2026/01/30)
引註此篇文章
你可能還會想看
FCC核准拍賣700MHz頻譜波段,作為各式無線服務的使用

  有鑑於目前美國的廣播電視系統所使用的698-806 MHz 頻譜波段(一般稱作700MHz頻段),預計在由類比式的電視系統轉換至數位電視系統後,該頻段可完全地為各類無線服務所使用,包括公共安全以及商業服務,聯邦通訊傳播委員會(Federal Communications Commission, FCC)在2007年4月25日對此採納了「報告與命令」(Report and Order)以及「規則制訂建議的進一步通告」(Further Notice of Proposed Rulemaking )等文件作為相關規範。   關於700 MHz頻段的使用,目前FCC正朝下列三個面向來規劃: (1) 在商用服務方面,FCC以不同經濟規模的區域(如都會區、較大的經濟區塊等)來決定執照的發放,同時也制訂了如功率限制及其他的技術性規範。 (2)在保護頻道(Guard Bands)方面,FCC將改變目前在次級市場方面的租賃管理制度,使取得執照的業者在保護頻道的使用上更有彈性與效率; (3) 在公共安全頻段方面,FCC認為藉著更多頻段的釋放,使全國不同的網路(包括寬頻與窄頻)皆能全面達成互連,使危難發生時更得以發揮保障公共安全之功能。   上述相關的規則與建議將使FCC得以拍賣700 MHz頻段中不同用途的執照,並期待在全國性無線寬頻服務的互連方面,營造出更為創新以及符合公共安全的服務環境。

日本Spam對策研究會即將公布最終報告

由Meta案看數位資料商業化面臨之跨國問題

於2023年5月22日愛爾蘭資料保護委員會(Ireland's Data Protection Commission, DPC)對於Facebook的母公司Meta將歐盟境內資料傳輸到美國的行為做出開罰12億歐元的決定,並暫停資料跨境傳輸行為,再次引起了各界對於資料跨境傳輸的關注。 針對跨國提供網路服務的企業,如何確保企業處理資料的方式可以符合多國的法規要求,向來是一困難的問題。自從2015年「安全港隱私準則」(Safe Harbour Privacy Principles)被歐盟法院宣告失效後,美國與歐盟試圖就資料跨境傳輸重新達成一個可符合雙方要求的框架,包含2020年被歐盟法院宣告無效的「隱私盾框架」(EU-US Privacy Shield Framework),而2022年3月雙方達成原則性同意的歐盟美國資料隱私框架(EU-U.S. Data Privacy Framework, DPF),惟就美國於同年10月發布用以實施之行政命令(EO 14086),亦於2023年5月被歐洲議會認為對於歐盟境內資料的保護不足。 2023年6月8日英國跟美國共同發布建立英美資料橋(UK-US data bridge)的聯合聲明,以建立起英美之間的資料流動機制,但該英美資料橋是基於歐盟美國資料隱私框架做進一步的擴展,能否符合歐盟對於資料保護的要求,目前尚無法預期。 目前的商業模式中資料跨境傳輸是難以避免的現實困境,各國亦就資料跨境傳輸建立框架,企業需持續關注自身營業所在地之法規變化,以即時因應調整自身管理機制。 本文同步刊登於TIPS網站(https://www.tips.org.tw/)

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

TOP