美國交通部(U.S. Department of Transportation)部長(時任)Anthony Foxx於2017年1月19日公布「車輛與基礎設施間聯網指引」(Vehicle-to-Infrastructure (V2I) Guidance),旨在透過加速車輛與基礎設施間通訊系統之布建,增進車聯網時代的行車安全與機動性。同時,本指引也將補充交通部於2016年12月所公布之車輛間通訊規則草案,後者最重要的目的是透過車輛間通訊技術的管理,提升駕駛人對於碰撞與潛在危險的認知以預為因應。透過車輛與基礎設施間聯網指引,交通部聯邦公路管理局(Federal Highway Administration, FHWA)將協助運輸系統的所有人與操作人進行相關技術的布建,並讓各運輸事業主管機關與收費道路管理機關,了解布建相關技術之決策所可能造成的影響,並為相關技術的未來發展與聯邦挹注資金的利用(因為多數的V2I能夠整合於既有之ITS設備或道路周邊基礎設施,因此符合聯邦對ITS的補助條件),做好準備。
車輛與基礎設施間之通訊,是車聯網環境的重要構成部分,透過硬體、軟體、韌體、以及無線通訊系統,相關資料不但能在車輛間進行動態傳輸,亦得在車輛與道路基礎設施間進行傳輸。聯邦公路管理局局長(時任)Gregory Nadeau表示:「除了增進行車安全,車輛與基礎設施間之通訊技術能提供相當大的機動性,並為整體環境帶來益處。車輛與基礎設施間之通訊與聯網,以及諸如隱私與互通性等更大的挑戰,都將由本指引作為展開全國性對話的起點。」車輛與基礎設施間聯網(V2I)可謂智慧運輸系統(Intelligent Transportation Systems, ITS)的次世代技術,其能捕捉車輛所產生的交通資料,並向車輛無線傳輸例如行車建議等的資訊,讓駕駛人能夠掌握與安全性、機動性、甚或是與整體環境相關的所有情況。
車輛與基礎設施間聯網指引的內容,目前包括聯網車輛運輸衝擊規劃初階報告(Connected Vehicle Impacts on Transportation Planning Primer)、聯網車輛運輸衝擊規劃桌上參考手冊(Connected Vehicle Impacts on Transportation Planning Desk Reference)、技術備忘錄第2號:聯網車輛規畫流程與產品及利害關係人角色與責任(Connected Vehicle Planning Processes and Products and Stakeholder Roles and Responsibilities)、技術備忘錄第3號:新型與強化型分析工具、技術、與資料之需求分析(Analysis of the Need for New and Enhanced Analysis Tools, Techniques, and Data)、技術備忘錄第6號:運輸規劃導入互聯車輛所需之技能與專業知識(Skills and Expertise Required to Incorporate Connected Vehicles into Transportation Planning)、新型與強化型分析工具、技術、與資料之需求分析:公路容量手冊簡介(Highway Capacity Manual Briefing)、新型與強化型分析工具、技術、與資料之需求分析:交通系統模擬模式簡介(Briefing for Traffic Simulation Models)、以及聯網車輛運輸衝擊規劃:社區關懷案例研究(Outreach to Planning Community)。
另外,為了讓執照核發條件透明化,相關的典範實務(best practices)也能為各政府與民間組織機關近用,以布建聯網車輛專用短程通訊(Dedicated Short Range Communications, DSRC)路邊基地台(Roadside Units, RSU)與相關服務,用以支援車輛與基礎設施間之聯網應用,亦針對執照持有人訂有指引(Guide to Licensing Dedicated Short Range Communications for Roadside Units)。
本文為「經濟部產業技術司科技專案成果」
歐盟執委會於2021年11月12日發布「2021年數位經濟與社會指數」(Digital Economy and Society Index 2021, DESI 2021),指數顯示歐盟各成員國都在持續推動數位轉型,但存在前段國家與後段國家之間的鴻溝仍然巨大,為了達成「歐洲數位十年:2030數位轉型目標」(Europe’s Digital Decade: digital targets for 2030),各成員國間應加強在數位轉型的協力合作。 DESI 2021統計資料取自2020年第一季到第二季之間,因此對於COVID-19疫情肆虐下對歐洲各國數位化的影響,需要等到2022年的指數方能呈現。不過DESI 2021資料顯示,56%的歐盟公民已經具備基本的數位技能,而歐盟資通訊專業人員數量來到840萬人,相較前一年的780萬人有顯著成長,但仍有55%的企業表示推動數位轉型最大的困難在於找不到資通訊人才。 在連線能力方面,歐盟推動「超高容量網路」(very high-capacity network, VHCN)的成果使家戶普及比例來到59%,相較前一年的50%亦有明顯增長,但相較全球高速寬頻網路普及目標仍有相當大的差距;在鄉村VHCN的布建上,則由2019年的22%來到2020年的28%。5G網路方面,完成頻譜分配的國家從16個成長至25個,其中有13個國家已經啟動5G商轉。 在數位科技整合方面,運用雲端技術的公司比例出現顯著成長,由2018年的16%成長至2020年的26%,大型企業持續擴大數位科技應用,包含運用企業資源規劃(Enterprise Resource Planning, ERP)進行電子資訊分享、雲端軟體的使用等。資料顯示數位轉型正在不斷落實與推進,但是要達成2030數位轉型目標仍有相當大的差距,有賴各國的合作與努力。
英國資料倫理與創新中心提出「議題速覽-深度偽造與視聽假訊息」報告英國資料倫理與創新中心(Centre for Data Ethics and Innovation, CDEI)於2019年10月發布「議題速覽-深度偽造與視聽假訊息」報告(Snapshot Paper - Deepfakes and Audiovisual Disinformation),指出深度偽造可被定義為透過先進軟體捏造特定人、主題或環境樣貌之影片或聲音等內容。除取代特定主體之臉部外,其亦具備臉部特徵重塑、臉部生成與聲音生成之功能。而隨相關技術逐漸成熟將難辨網路視聽影像之真偽,故CDEI指出有必要採取相關因應措施,包含: 一. 立法 許多國家開始討論是否透過訂立專法因應深度偽造,例如紐約州眾議院議員提出法案禁止特定能取代個人臉部數位技術之應用,美國國會亦有相關審議中草案。然而,縱有法律規範,政府仍無法輕易的辨識影片製造者,且相關立法可能抑制該技術於正當目的上之應用,並導致言論自由之侵害,故未來英國制定相關制度之制定將審慎為之。 二. 偵測 媒體鑑識方法於刑事鑑識領域已實行多年,其也可以運用於辨識深度偽造。媒體鑑識方法之一為檢查個體是否有物理上不一致之現象,以認定特定證物是否經竄改,包括拍攝過程中被拍攝對象是否眨眼,或皮膚上顏色或陰影是否閃爍。雖目前英國相關鑑識專家對於媒體鑑識方法是否可辨識深度偽造仍有疑義,惟相關單位已經著手發展相關技術。 三. 教育 教育亦為有效因應深度偽造之方法。目前許多主流媒體均開始喚起大眾對於深度偽造之意識,例如Buzzfeed於去年即點出5個方法以辨認有問題之影片。科技公司也開始投入公眾教育,提高成人網路使用者對於假訊息與深度偽造之辨識,然而報告指出其成效仍有待觀察。
音樂串流服務網站鼻祖Grooveshark正式關閉美國音樂串流服務網站Grooveshark於2015年4月30日在紐約聯邦法院與三家唱片公司(Warner Music Group, Universal Music Group, Sony Music Entertainment)達成和解協議,以避免由陪審團判決(jury verdict)所帶來高達7億3千6佰萬美金的侵權賠償金。Escape Media Group以5千萬美金、公開道歉及關閉經營將近10年的Grooveshark網站為代價結束了這起爭訟多年的著作權訴訟案。 Grooveshark網站的成立理念爲提供使用者上傳音樂的平臺,樂迷可透過平臺互相分享與檢索音樂,因此網站原本適用於數位千禧年著作權法(Digital Millennium Copyright Act)中的避風港原則。惟Grooveshark網站實質上透過員工上傳盜版音樂,此一做法已明顯超出避風港原則的保護範圍。紐約聯邦法院法官於去年秋季的裁定中指出,Escape Media Group透過員工上傳盜版音樂獲取利益為無可爭辯的證據,因此認爲該公司應對著作侵權負責。 紐約聯邦法院法官於審前會議中指出一旦Escape Media Group的故意侵權罪成立,每首歌曲應賠償15萬美金的侵權賠償金,而網站目前擁有近5千首歌曲,因此侵權賠償金額將高達7億3千6佰萬美金。此裁定成爲了此案達成和解協議的催化劑。對於此次的訴訟結果,美國唱片業協會(The Recording Industry Association of America,)代表三家唱片公司表示此次的和解成功杜絕了侵權音樂的主要來源,對於藝術工作者而言十分可貴。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。