澳洲證券投資委員會(Australian Securities and Investments Commission, ASIC) 於2016年12月15日發布第257號法規指導(Regulatory Guide 257,RG 257)-在未持有AFS或信用執照的狀態下測試fintech產品與服務(Testing fintech products and services without holding an AFS or credit licence)。RG 257並包含澳洲的監理沙盒架構。重要內容如下:
1.有別於其他國家的監理沙盒需要申請方能適用,透過法規以及ASIC澳洲已經提供一些鬆綁機制,換句話說並不需要事先申請就可以取得監管沙盒鬆綁。例如非現金支付產品,包含儲值卡,以及某些國外交易服務。
2.ASIC的fintech 執照豁免見諸於ASIC Corporations (Concept Validation Licensing Exemption) Instrument 2016/1175 以及ASIC Credit (Concept Validation Licensing Exemption) Instrument 2016/1176。
3.ASIC也可個別提供客製化的執照豁免以促進產品或服務測試,個別豁免就比較接近其他國家的監管沙盒架構。
因此基本上,只要符合法定以及上述兩個instruments的規定,就可以自動取得監管沙盒的鬆綁,而無需另外申請,唯需「通知」ASIC,並提供相關資料。監理沙盒的適用期間為十二個月。但是如果不符法定以及Instrument 2016/1175、Instrument 2016/1176的規定,也可以另外向ASIC申請客製化的豁免。
目前可適用Instrument 2016/1175的金融服務包含:
•掛牌的澳洲證券;
•簡易管理的投資架構;
•存款產品;
•某些一般的保險商品;以及
•「授權存款取用機構(authorised deposit-taking institutions,ADIs)」發行的支付產品。
唯須注意的是,Instrument 2016/1176允許有限的信用協助,但是不得提供借貸。另外,使用監理沙盒的fintech企業最多只能有100個零售客戶,以有效控制風險。
歐盟電子通訊隱私指令(Directive 2002/58/EC on Privacy and Electronic Communications, e-Privacy Directive)針對cookie(即業者為辨別使用者身份而儲存在用戶端上的資料)設置的規範,於2009年修正,將在今年在5月25日之前全面施行。歐盟跟據該項規定,要求業者,當其使用cookie追蹤網路使用者的使用行為時,必須取得網路使用者的「明示同意」,且每隔一年,業者皆必須重新取得該項「同意」,網路使用者亦得隨時撤回。實務上對於該項同意究竟應由業者「主動」要求,亦或「被動」等待網路使用者以允許cookie設置方式而直接視為同意,仍有爭議。 儘管如此,英國政府仍已決定內化該指令,制定其國內cookie設置規範。英國資訊委員會(Information Commission)將提出指導原則,協助業者遵循該規範。相關政府單位,亦已開始著手協助業者重新設定網頁瀏覽器。有關當局表示,英國政府將會在歐盟限定的期限內推動此規範,不過,該歐盟指令係強制規範,業者是否能在短期內完成該規範遵循仍有疑議。針對此點,英國政府已通令其資訊委員會,對於已著手改正其隱私規範並重新設置瀏覽器的業者,即便未於期限內完成該規範遵循,亦不受罰。英國未來實施的cookie設置規範究竟會如何發展,仍待觀察。
日本為防堵黃牛票6月正式施行票券不當轉賣禁止法日本在2019年6月14日正式施行「確保表演入場券流通正當性之禁止不當轉賣特定表演入場券相關法律」(特定興行入場券の不正転売の禁止等による興行入場券の適正な流通の確保に関する法律),簡稱票券不當轉賣禁止法(チケット不正転売禁止法),其以訂立專法之方式,來防止黃牛業者先大量取得票券,再以賺取高額差價之方式牟利。其重點包括: 禁止行為:(1)不當轉賣票券;(2)以不當轉賣為目的而讓售票券。 適用範圍:在日本國內所舉行,且得為不特定多數人得共聞共見之電影、歌劇、舞台劇、音樂、舞蹈及其他藝術或體育活動。 票券應記載事項: (1)發行人在販售時明確表示,禁止未經發行人同意而進行買賣轉讓,並應將禁止事項記載於票券上;(2)舉行表演之時間、地點及具入場資格者之指定座位;(3)發行人在販售時,需採取確認入場者或購票者之姓名和聯繫方式等必要措施,並應將確認事項記載於票券上。 不當轉賣定義:以有償轉賣未得票券發行人事前同意轉讓之票券為業,並以超過售價之價格進行販賣。 日本政府並針對2019年9月份在日本所舉辦之橄欖球世界杯及2020年在東京所舉辦之奧運會加強宣導該法令。我國熱門活動、演唱會也常面臨黃牛掃票,再高額轉售之問題。日本之立法模式,不失為我國參考借鏡之對象。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
醫療與健康資料創新應用法制研析醫療與健康資料創新應用法制研析 資訊工業策進會科技法律研究所 2022年06月25日 壹、事件摘要 配合未來智慧醫療與精準健康之發展,民眾的健康、醫療資料將成為相關創新技術之基礎,且需整合許多異質資料庫(包括:生物資料、病歷、環境資料、基因資料等)作為相關研究與診斷基礎。然而,在創新實驗階段,個人資料保護向來是最核心之議題,如何在「創新技術」與「資料保護」間需取得衡平,於保護民眾個資權利的同時,又能滿足規範緩解或彈性化之明顯需求,便成為亟待解決的問題。 近年來,我國積極透過「法規沙盒」(Regulatory Sandbox)制度,來創造一個兼顧技術創新與有效監理的機制,例如《金融科技發展與創新實驗條例》與《無人載具科技創新實驗條例》皆是設立法規沙盒制度,在確保法律監管的前提下,依個案情形適度地鬆綁法規,為業者打造出恰當的實驗空間,以鼓勵創新發展。然而,我國於金融與交通領域訂立沙盒制度之時,關於個資法是否能被豁免,一度成為討論重點,最後二條例皆明文規定實驗進行以遵守個資法為原則,因此法規沙盒制度宜否用以緩解醫療與健康資料相關法律限制,仍堪研探;此外,醫療法規沙盒所涉及的醫療或健康資料主要落入敏感性資料之範疇,在個資法監管密度更高的情形下,更加限制了智慧醫療與精準健康產品或服務之發展,則如何突破此等醫療領域創新困境,即屬我國未來應密切關注之焦點。 職是之故,本文將研探國際上涉及醫療健康資料之機制,以作為我國法規沙盒等制度措施抑或設計其他方式運作之借鏡,讓創新者能獲有個資法等法規之規範彈性空間以進行創新活動。 貳、重點說明 以下對於英國、日本及新加坡等國制度,觀測分析其如何緩解資料法規而創造出彈性化空間,使創新者有機會藉此活用醫療健康資料,進行醫療領域之創新發展。 一、英國 (一)ICO法規沙盒 英國資訊專員辦公室(Information Commissioner's Office, ICO)於2019年推出法規沙盒計畫,希望可向利用個人資料開發具有明顯公共利益的創新產品和服務的組織,提供必要的試驗空間。在進入沙盒之前,ICO將會要求申請者簽署相關條款,並有專屬ICO沙盒成員與之聯繫,安排會議協助制訂沙盒計畫,同時也會要求申請者進行資料保護自我評估清單,以利沙盒計畫之制定[1]。 此沙盒的特色之一,在於不會完全排除資料保護規範之適用,而是著重於如何協助業者遵法,參與者能透過此計畫借助ICO在資料保護方面的專業知識和建議,從而在測試創新服務時減輕風險,並確保適當的個資保護措施臻於完備[2]。此外,參與者也將會收到一份暫緩執法聲明(statement of comfort from enforcement),亦即在參與沙盒期間,若產品或服務因疏忽而有違反資料保護相關法規之情形,只要違規行為未超出原先進入沙盒所預想的情況,便不會立即導致ICO的監管行動,暫緩程度則取決於創新團隊與ICO保持協作與對話之狀況[3]。 截至2021年2月,其尚有9個測試案例正在進行中,而與健康、醫療資料有關者為CDD服務有限公司(CDD Services)及諾華製藥的語音解決方案(Novartis Voice Enabled Solutions project)[4]。 (二)動態同意機制 「動態同意」(Dynamic Consent)是指一種基於網路與資通訊技術的即時同意程序,透過利用資通訊技術建立的動態同意網路平台,研究者得即時通知資料當事人其研究進度、研究目的變更等事項,資料當事人則得隨時修改同意範圍或撤銷同意[5]。 動態同意機制的優點,對研究者而言,在於節省許多徵詢同意所需之成本,也能清楚瞭解資料庫中的資料附加了哪種類型的同意或是資料當事人要求徵詢同意的密度[6],並且可以更加容易地整合其他多媒體技術(例如播放影片、照片與錄音)進行研究內容與風險之說明。而對於資料當事人而言,動態同意則可解決同意成本過高而不得不實施過於寬泛的概括同意之情形,從而更加保障資料主體之資料自主權[7]。 在英國,動態同意之原型係於2008年左右ENCoRe計畫提出;國際間較為有名的計畫皆實施於英國,例如曼徹斯特大學inBank團隊開發的蒐集與處理電子健康紀錄系統、牛津大學主導的參與式Rudy研究等[8]。 二、日本 日本於2018年實施「專案型沙盒」制度,建立特定不受現有法規限制之情境,使業者得於限定期間及場域內,以「新興技術」進行實證[9]。所謂「新興技術」,係指在創新事業活動中所使用具有顯著新穎性之技術或方法,且該技術或手法可創造出高附加價值者[10],而「具顯著新穎性」者,則指相較於該領域的常用技術和方法,更有新穎性且得以衍生實用化和事業化討論的技術與方法,例如AI、IoT、巨量資料、區塊鏈等[11]。 專案型沙盒中,有3件與醫療相關的案例,其中涉及個資法規範的是「以生物辨識技術了解本人意思(Digital Living Will)」一案。本案情境為考量到獨居老人數量增加,其因急救被送往醫療機關時,尚需時間確認其身分,甚至須向家屬說明治療方式且獲同意後,始得開始檢查和治療,而常有遲延急救時間之情事,故醫院及醫療業者共同申請一項專案型沙盒實證計畫,藉由「預立同意」之方式保存個人手術及檢查等意願,待患者發生急救情形時,將依指紋、手指靜脈、人臉等生物辨識技術準確且迅速地確認身分,向醫院提供患者的個人意願資料。本計畫採取的新技術,涉及日本個資法第18條、第19條及第23條規定,申請者表示將依法辦理之,例如告知參加者「獲取生物辨識資料之利用目的」、經參加者同意後始向第三方提供生物辨識資料等,並由厚生勞動省和個人情報保護委員會等主管機關進行監督[12]。 三、新加坡 新加坡於2012年10月通過《個人資料保護法》(Personal Data Protection Act 2012, PDPA)[13],同時依法設置個資保護委員會(Personal Data Protection Commission, PDPC)。該法旨在規範「非公務機關」之個人或組織對於個人資料的蒐集、利用及揭露(例如與第三方共享)等相關行為。該法第62條設計了豁免權(Exemption),個人或組織可於備妥申請文件後,向個資保護委員會預先申請尋求《個人資料保護法》任何條文之豁免;經審查批准後,個資保護委員會可以透過命令(order),在特定的規則或情況下,豁免任何個人或組織遵守本法的全部或部分規定[14]。 再者,新加坡提出「資料協作計畫」,以促進組織、政府、個人三方間資料無障礙流通,創造更多合作機會進行創新應用。該計畫可分作兩部分,首先建立「可信賴資料共享框架」(Trusted Data Sharing Framework),為企業對企業的資料交換方法步驟提供指南;其次提出「資料共享安排」(Data Sharing Arrangements)的資料法規沙盒計畫[15],排除企業以創新模式近用個人資料時發生的阻礙,「資料共享安排」係依據上述個人資料保護法第62條所賦予的豁免權,讓個人或組織可在個人資料保護委員會訂定的規則下,依照個案給予組織免除個資法部分規範(例如:不須取得當事人同意、免除跨境傳輸之限制)。故總體而言,「資料協作計畫」下的「可信賴資料共享框架」與「資料共享安排」,將由政府擔任監管角色,申請者只要符合指南建議方向,例如遵循法律、達到一定資料技術應用品質、實施資安與個資保護措施等,便可進行個人與商業資料之共享。 以「中風患者於資料共享安排(資料法規沙盒計畫)之運作」為例,醫院、志願福利組織(Voluntary Welfare Organization, VWO)[16]與行政機關之資料共享計畫,彼此之間分享病患個人資料,毋須再經患者之同意,由資料中介機構進行資料分析,以改善服務並確保有效媒合老年中風患者之援助。經分析後,志願福利組織可主動與醫院患者接觸以利其提供收入援助或社會支持,行政機關則可利用相關資訊改善政策[17]。 參、事件評析 隨著新興科技崛起,資料驅動之技術創新需求於近年大幅顯現,若個資法規範始終缺乏彈性,又無相關機制確保創新空間,我國社會經濟發展將嚴重受影響。對此,面對「創新技術」與「資料保護」間如何取得衡平的難題,各國政府透過不同規範及政策手段,給予個資法規範一定彈性,以促進國內創新與轉型的腳步,可見個資法既定規範並非絕對,重點仍在於如何做好個資保護評估及風險管控,使資料主體於創新實驗下仍可受到隱私保護。 綜觀上開國家的資料法規彈性化措施,主要以兩大方式進行,其一為「針對法規提出整體鬆綁或彈性化機制」(法規面),例如英國ICO法規沙盒、日本專案型沙盒、新加坡資料共享安排機制皆屬之,雖各國立法模式或依據有所不同,但主要仍是利用法規沙盒或性質相近之措施,於運作上賦予個資法規一定彈性。其二則為「利用技術解消資料利用障礙」(技術面),例如動態同意機制,透過科技來擴大個資法規的適法及遵法態樣。 據此,我國在研議「醫療領域宜否應用法規沙盒等制度,緩解個資法等相關法規現行規範」時,或可先肯認個資法確有(有條件地)豁免適用之餘地,且得以法規沙盒作為個資法限制之彈性機制。其次,在立法模式的選擇上,由於我國已著手立法《智慧醫療創新實驗條例》(草案)[18]或考量規劃泛用型法規沙盒,未來或可於「醫療法規沙盒」或「泛用型法規沙盒」立法過程中,研議是否豁免創新實驗有關個資法令之適用。再者,針對個資法豁免條件,有鑑於沙盒實驗期間不能忽視個人利益之隱私保障措施,故應有一套完善機制協助法規沙盒之監管,相關豁免事項及條件設計,也須考量創新、公共利益與資料當事人權利侵害之比例原則。最後,在實作方面,機關亦可協助與輔導業者引進動態同意等措施及其新技術,以利業者遵法。 [1] ICO, What will happen if our application to the Sandbox is successful?, https://ico.org.uk/for-organisations/the-guide-to-the-sandbox/what-will-happen-if-our-application-to-the-sandbox-is-successful/ (last visited Feb. 6, 2021). [2] ICO selects first participants for data protection Sandbox, https://www.computerweekly.com/news/252467504/ICO-selects-first-innovation-Sandbox-participants (last visited Feb. 6, 2021) [3] ICO, What will happen if our application to the Sandbox is successful?, https://ico.org.uk/for-organisations/the-guide-to-the-sandbox/what-will-happen-if-our-application-to-the-sandbox-is-successful/ (last visited Feb. 6, 2021). [4] ICO, Current Projects, https://ico.org.uk/for-organisations/regulatory-sandbox/current-projects (last visited Feb. 6, 2021). [5] Jane Kaye, Edgar A Whitley, David Lund, Michael Morrison, Harriet Teare & Karen Melham, Dynamic consent: a patient interface for twenty-first century research networks, European Journal of Human Genetics, 23, 141–146 (2015) [6] 動態同意平台上的研究者介面,可能顯示資料當事人對於哪種類型的研究給予何種同意(例如對於心臟病研究給予概括同意;對於癌症研究給予特定同意),允許概括同意的時候也可以註記同意期限,或設定其他限制。 [7] Rasmus Bjerregaard Mikkelsen, Mickey Gjerris, Gunhild Waldemar & Peter Sandøe, Broad consent for biobanks is best - provided it is also deep, BMC Med Ethics, 20(1),71 (2019) [8] 義大利、美國、日本與澳洲等國目前皆有實施動態同意之機制,但都是以特定疾病或研究主題為主,尚未有全國通用的動態同意系統。義大利有名為「CHRIS」的慢性病研究動態同意平台;美國有非營利組織架設名為「PEER」的基因研究動態同意平台;日本有名為「Rudy Japan」的動態同意平台;澳洲有名為「CTRL」的動態同意平台。 [9] 生産性向上特別措置法第2條第2項。 [10] 同前註。 [11] 新技術等実証の総合的かつ効果的な推進を図るための基本的な方針,頁1(2018),https://www.kantei.go.jp/jp/singi/keizaisaisei/pdf/underlyinglaw/basicpolicy.pdf(最後瀏覽日:2021/2/10)。 [12] 〈生体認証を用いた本人意思に基づく救急医療の実証〉,首相官邸,https://www.kantei.go.jp/jp/singi/keizaisaisei/project/gaiyou7.pdf (最後瀏覽日:2021/2/19)。 [13] Personal Data Protection Act 2012, No. 26 of 2012. [14] Personal Data Protection Act 2012, Section 62. [15] Data Collaboratives Programme, https://www.imda.gov.sg/programme-listing/data-collaborative-programme (last revised Jun. 8, 2021) [16] 獨立於政府與市場運作之外的團體或組織。 [17] PDPC, Guide to Data Sharing (2018), https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Data-Sharing-revised-26-Feb-2018.pdf (last revised Jun. 8, 2021). [18] 鄭鴻達,〈政院BTC閉幕 吳政忠:推智慧醫療沙盒、生醫條例修法〉,聯合新聞網,2021/09/01,https://udn.com/news/story/7238/5715580(最後瀏覽日:2022/06/13)。