所謂自動駕駛(autopilot),原來是指一個用來控制載具軌道而無需人工一直干預的系統,亦即無須人類持續干預,但人類仍須於關鍵時刻介入進行決定或作為,此時機器僅作為輔助。
而自動駕駛汽車或稱全自動駕駛,則只完全無須人類干預,由機器自動感應偵測,自動做成決策控制車輛行駛。故由人類的介入程度區別究竟是駕駛輔助或自動駕駛。美國國家公路交通安全管理局(NHTSA)於2016年已提出正式的分類系統,除手動駕駛(0級)外,區分弱駕駛輔助(1級)、部分自動駕駛(2級)、有條件全自動(3級)、高度/完全自動化(4級)不同程度的自動駕駛。其他國家如德國,在聯邦政府的「自動駕駛圓桌會議」也對自動駕駛有類似的四等級區分。
德國聯邦政府也在於2017年1月25日提出規範自動駕駛之法律草案,亦即道路交通法修正法(Änderung des Straßenverkehrsgesetzes),核心在於賦予電腦與人類駕駛者法律上同等地位。亦即,駕駛人的定義未來擴張延伸到「使用不同程度自動駕駛系統者」。根據草案將來在車輛行駛中,人類可以在特定時間與特定狀況下接管整個行駛。而最重要的修正:人類始終應該負使用電腦的最終責任。
故在行駛中駕駛人將會被輔助機器替代,更要求自駕系統應該具備“隨時可以由駕駛人接手操控或停俥”的功能。 分類中,駕駛人的角色只有到全自動駕駛實現時才退場,屆時才會發生無駕駛人只有乘客的狀況。
修法也重視自駕技術失敗並導致事故所生責任分擔的問題。對於責任的調查將採用如同飛航安全中之「黑盒子」的方式,該裝置會記錄行駛中的所有基本資料。這將有助於發生事故後澄清,查明究竟是技術上原因、製造商或駕駛員的過失,以確保駕駛人無法將責任全部推給自動化系統的故障。
本文為「經濟部產業技術司科技專案成果」
美國參議院近日就是否開放聯邦經費挹注於胚胎幹細胞研究進行激辯,並於 17 日通過幹細胞研究加強法( Stem Cell Research Enhancement Act of 2005, HR 810) 及其他兩項亦涉及胚胎幹細胞研究的類似法案。其中最引人注目者為 HR 810 ,該法案允許以聯邦經費資助使用人工授精之剩餘胚或病患自願捐贈之胚胎,進行幹細胞研究。這些法案的通過顯示,美國參議院打算挑戰布希政府自 2001 年所立下禁止聯邦經費挹注於胚胎幹細胞研究的禁令。 其實早在去年五月,眾議院即以 238 票贊成、 194 票反對通過 HR 810 ,布希政府在眾議院通過 HR 810 後,隨即表示一旦本法在國會立法通過,將會動用否決權推翻此一法案。根據美國法律,法案唯有經參眾議院以三分之二以上多數通過,總統始不能否決之。日前參議院係以 63 票贊成、 37 票反對通過 HR 810 ,並未達三分之二多數通過,因此本法案未來恐難逃被布希總統否決的命運。白宮發言人業已表示,該法案強迫所有的美國納稅義務人出錢資助以故意破壞人類胚胎為基礎的研究行為,法案一旦送交總統,布希總統將會行使否決權,這將會是布希總統任內首度針對國會所通過的法案動用表決權。 儘管布希總統仍持一貫反對胚胎幹細胞研究的立場,不過,美國民眾卻有支持胚胎幹細胞研究的趨勢。一項最新民調顯示,每四名受訪者中,就有三名贊成將聯邦經費用於資助胚胎幹細胞的研究。隨著美國國會大選將於十一月中旬展開,預料胚胎幹細胞研究議題將會再度成為焦點。
美國衛生部門公布個人健康資訊外洩責任實施綱領美國健康與人類服務部(Secretary of Health and Human Services;以下簡稱HHS),於2009年4月17日公布「個人健康資訊外洩通知責任實施綱領」(Guidance Specifying the Technologies and Methodologies That Render Protected Health Information Unusable, Unreadable, or Indecipherable to Unauthorized Individuals for Purposes of the Breach Notification Requirements under Section 13402 of Title XIII (Health Information Technology for Economic and Clinical Health Act) of the American Recovery and Reinvestment Act of 2009; Request for Information;以下簡稱本綱領)。本綱領為美國迄今唯一聯盟層級之資料外洩通知責任實施細則,並可望對美國迄今四十餘州之個資外洩通知責任法制,產生重大影響。 本綱領之訂定法源,係依據美國國會於2009年2月17日通過之經濟與臨床健康資訊科技法(Health Information Technology for Economic and Clinical Health Act;以下簡稱HITECH),HITECH並屬於2009年「美國經濟復甦暨再投資法」(America Recovery and Reinvestment Act;簡稱ARRA)之部分內容。 HITECH將個人健康資訊外洩通知責任的適用主體,從「擁有」健康資訊之機構或組織,進一步擴大至任何「接觸、維護、保留、修改、紀錄、儲存、消除,或以其他任何形式持有、使用或揭露安全性不足之健康資訊」的機構或組織。此外,HITECH並規定具體之資料外洩通知方法,即必需向當事人(資訊主體)以「即時」(獲知外洩事件後60天內)、「適當」(書面、或輔以電話、網站公告形式)之方式通知。不過,由於通知之範圍僅限於發生「安全性不足之健康資訊」外洩,故對於「安全性不足」之定義,HITECH即交由HHS制定相關施行細則規範。 HHS本次通過之實施辦法,將「安全」之資料定義「無法為第三人使用或辨識」,至於何謂無法使用或辨識,本綱領明定有兩種情形,一是資料透過適當之加密,使其即使外洩亦無法為他人辨識,另一則是該外洩資訊之儲存媒介(書面或電子形式)已被收回銷毀,故他人無法再辨識內容。 值得注意的是,有異於美國各州法對於加密標準之不明確態度,本綱領已指明特定之技術標準,方為其認可之「經適當加密」,其認可清單包含國家標準與技術研究院(National Institute of Standards and Technology)公布之Special Publication 800-111,與聯邦資訊處理標準140-2。換言之,此次加密標準之公布,已為相關業者提供一可能之「安全港」保護,使業者倘不幸遭遇資料外洩事件,得主張資料已施行適當之加密保護,即無需承擔龐大外洩通知成本之衡平規定。
歐盟法院判決,電信業者是否有提供其客戶個人資料之義務,由各會員國自行制定規範歐盟法院於2008年1月29日判決(Az. C-275/06)指出,基於歐盟現行相關指令規範,並未強制或禁止電信服務提供者有提供客戶或使用者之個人資料的義務。 本案源起於西班牙著作權人團體Productores de Música de España對電信服務提供者Telefónica提出之著作權侵害訴訟。原告Productores de Música de España主張被告Telefónica有義務提供其網路使用者之身分,因該網路使用者乃透過被告所提供之連線服務,連線至檔案分享平台KaZaA,並提供下載違反著作權之音樂檔案。被告Telefónica 則根據西班牙現行資訊社會及網路使用之相關規範,拒絕提供該客戶之個人資料。根據西班牙法令,僅有在刑事犯罪追訴或有明顯侵害公益之情事下,始允許電信服務提供者提供客戶之個人資料。 西班牙法院因此向歐盟法院提出預先決定(Vorabentscheidung)*之請求,請其確認基於現行歐盟法規,各會員國是否應強制民事訴訟程序之當事人,即本案的電信服務提供者,有提供足以確認其使用者身分之資料的義務規定,以達有效遏止著作權侵害之目的。歐盟法院在分析各相關指令如電子商務、隱私權保障等相關規定後,認為歐盟現行法規並未就此議題有強制規定,各會員國應於考量隱私權以及其他權利之保障,且在不違法歐盟規範前提下,自行決定是否在國內制定類似之規定。 反觀德國在落實歐盟「儲存通訊資訊指令(Directive 2006/24/EC)」於國內法後,則允許在符合特定情況下,當事人於民事訴訟程序中有提供個人資料之義務。該法令因存有違反隱私權保護之爭議,通過後迄今仍有極大之反對聲浪。 *因歐盟條約規定,若會員國法院對於條約解釋、共同體組織與歐洲中央銀行行為之有效性與解釋以及執委會所設立的機構的章程之解釋有疑問,且會員國法院認為上述問題之決定於判決之作成有其必要,得申請歐洲法院裁決,此為預先決定。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現