所謂自動駕駛(autopilot),原來是指一個用來控制載具軌道而無需人工一直干預的系統,亦即無須人類持續干預,但人類仍須於關鍵時刻介入進行決定或作為,此時機器僅作為輔助。
而自動駕駛汽車或稱全自動駕駛,則只完全無須人類干預,由機器自動感應偵測,自動做成決策控制車輛行駛。故由人類的介入程度區別究竟是駕駛輔助或自動駕駛。美國國家公路交通安全管理局(NHTSA)於2016年已提出正式的分類系統,除手動駕駛(0級)外,區分弱駕駛輔助(1級)、部分自動駕駛(2級)、有條件全自動(3級)、高度/完全自動化(4級)不同程度的自動駕駛。其他國家如德國,在聯邦政府的「自動駕駛圓桌會議」也對自動駕駛有類似的四等級區分。
德國聯邦政府也在於2017年1月25日提出規範自動駕駛之法律草案,亦即道路交通法修正法(Änderung des Straßenverkehrsgesetzes),核心在於賦予電腦與人類駕駛者法律上同等地位。亦即,駕駛人的定義未來擴張延伸到「使用不同程度自動駕駛系統者」。根據草案將來在車輛行駛中,人類可以在特定時間與特定狀況下接管整個行駛。而最重要的修正:人類始終應該負使用電腦的最終責任。
故在行駛中駕駛人將會被輔助機器替代,更要求自駕系統應該具備“隨時可以由駕駛人接手操控或停俥”的功能。 分類中,駕駛人的角色只有到全自動駕駛實現時才退場,屆時才會發生無駕駛人只有乘客的狀況。
修法也重視自駕技術失敗並導致事故所生責任分擔的問題。對於責任的調查將採用如同飛航安全中之「黑盒子」的方式,該裝置會記錄行駛中的所有基本資料。這將有助於發生事故後澄清,查明究竟是技術上原因、製造商或駕駛員的過失,以確保駕駛人無法將責任全部推給自動化系統的故障。
本文為「經濟部產業技術司科技專案成果」
英國內政部(Home Office)於2015年11月4日公布一項關於網路監管的「調查權法草案」(Draft Investigatory Powers Bill),其主要目的係為提供執法、國安及情治單位,如英國安全局(MI5)、秘密情報局(MI6)、英國政府通訊總部(GCHQ)對於資通訊內容之掌控能力,用以因應數位時代不斷升高的維安需求,例如防止恐怖攻擊、兒童性剝削、破解跨國犯罪集團、協尋失蹤人口、犯罪現場之定位及嫌疑人相關聯繫對象等,該草案一旦通過,將迫使網路及電信服務業者保留其客戶之通訊數據、瀏覽記錄長達一年,甚至在必要情況下,協助英國政府攔截通訊數據、破解加密訊息。 其條文共計202條,分為九部分,對於通訊數據調查權行使所採取之主要手段包含攔截通訊(Interception)、數據監看(Oversight)、以設備干擾連結(Equipment Interference)、大量蒐集個人通訊資料(Bulk Powers)等,由於法案將擴張英國政府對網路隱私之干涉,對此內政大臣Theresa May表示,新法對於瀏覽記錄著重於使用者到訪過哪些網站,而非其瀏覽過的每一個網頁,同時,對於某些握有他人敏感資料的職業,例如醫生、律師、記者、國會議員及神職人員等,擁有較多的保護。 此外,草案亦闡明將建立政府自我監督及防濫權機制,包含未來將創設調查權利委員(Investigatory Powers Commissioner,簡稱IPC)專責監督政府調查權之行使,以及一套稱為Double Lock的新制度,即前述攔截數據資料權之行使,須有內政大臣親自核發之令狀,且該令狀應獲得司法委員(Judicial Commissioner)之批准。 這項草案無疑將引來公益與私利間之衝突,也在資通訊業界造成極大的反彈,縱然「調查權法案」並未限制相關電信與網路業者不得對其服務加密,卻要求於必要情況下提供解密協助,然而目前許多通訊服務採「點對點加密」(End-to-End Encryption)技術,若非發送及接收兩端之人,即便是提供該服務之公司也無法解密,一旦草案通過,類似WhatsApp或Apple所開發之iMessage將如何在英國使用,將會是未來觀測的重點。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
汽車經銷公司營業秘密案顯示,僅資安手段不足以構成營業秘密的保密措施本文參照2025年3月21日紐約東區地方法院的Superb Motors Inc. v. Deo一案,提醒企業:在數位化與資料外洩風險日增的時代,即使資訊具有高度價值,若僅採取防火牆(Firewall)、帳號密碼之技術手段,而未採取具體之書面規範或契約之營業秘密保密措施者,法院仍可能認定不足以符合營業秘密之合理保密措施要件。 本案源於2023年8月16日,Superb汽車經銷公司控訴前股東Deo離開公司後,擅自使用其客戶名單與核心系統Dealer Management System(下稱DMS),協助競爭對手拓展業務、挖角員工,並導致前公司客戶流失。Superb公司主張,公司投入逾12萬美元整合DMS系統,且以150萬美元的廣告與行銷策略蒐集並以多年經驗建構完整的客戶資料庫,屬於具競爭優勢的關鍵資產。 法院認為,Superb公司僅以防火牆、帳號密碼限制資訊存取,期待員工自發性保密,而未提供任何形式的保密協議或明確政策文件,此舉不足以構成合理保密之手段。法院認為,營業秘密保護法所要求的保密措施,需具備可執行的契約條款,例如:保密協議或公司內部保密政策規範。 為助於訴訟舉證、減少因人力流動可能發生的資料外洩風險,企業不能僅依賴科技工具,而應積極主動地搭配企業政策與契約等法律文件。參考美國實務,建議企業採取下列營業秘密管理作法: 1.與有權接觸敏感資訊之員工、顧問簽訂保密協議,且企業應定期檢視與修訂保密條款,以確保條款符合最新的勞動法相關要求並具備可執行性。 2.建立公司內部保密制度與定期教育訓練,以確保員工理解公司要求之保密義務。 本案顯示出法院對「營業秘密合理保密措施」認定的標準,不僅留意保密技術複雜性,更著重於企業採取的保密措施(如保密契約)是否具有法律上的拘束力。 資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」已涵蓋前述美國實務建議之管理作法,我國企業如欲精進系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
德國數位經濟2017監測報告及建議德國經濟與能源部於2017年12月公布數位經濟2017監測報告,就ICT及網路經濟的表現和競爭力統計各產業數位經濟程度,並針對德國數位轉型現況及挑戰進行分析並提出相關建議。 報告資料指出, 在六大創新應用潛力的部分,14%的企業已投入工業4.0改造,集中於機械製造業,數量有逐步上升趨勢;物聯網應用則以服務業居多,特別是知識密集型服務提供者;33%的企業有提供智慧服務,以客戶為導向的企業,例如資通訊業、金融保險業,使用比例更為明顯;19%企業開始利用巨量資料,多集中於大企業或先進產業;11%企業有利用機器人及感測器;人工智慧則尚處於起步階段,而使用者多集中於資通訊產業。就上述資料顯示,推動數位轉型尚待加強。另外,今年監測報告聚焦「數位聯網及合作」議題,結果顯示,約六成的企業與其商業客戶有進行數位聯網,而只有約四成的公司與新創公司有合作,因此尚有許多創新潛力尚未得到充分利用。 國際數位經濟排名第六,落後美國、南韓、英國、日本、芬蘭。在獲得風險資本可能性的表現最佳,整體創新能力也處於相對領先地位,惟電子化政務服務較為落後,有待加強。在關鍵政策需求部分,以寬頻建設促進政策、創建數位化友善法律框架,以及獲取創新基礎的公共知識最受矚目。