所謂自動駕駛(autopilot),原來是指一個用來控制載具軌道而無需人工一直干預的系統,亦即無須人類持續干預,但人類仍須於關鍵時刻介入進行決定或作為,此時機器僅作為輔助。
而自動駕駛汽車或稱全自動駕駛,則只完全無須人類干預,由機器自動感應偵測,自動做成決策控制車輛行駛。故由人類的介入程度區別究竟是駕駛輔助或自動駕駛。美國國家公路交通安全管理局(NHTSA)於2016年已提出正式的分類系統,除手動駕駛(0級)外,區分弱駕駛輔助(1級)、部分自動駕駛(2級)、有條件全自動(3級)、高度/完全自動化(4級)不同程度的自動駕駛。其他國家如德國,在聯邦政府的「自動駕駛圓桌會議」也對自動駕駛有類似的四等級區分。
德國聯邦政府也在於2017年1月25日提出規範自動駕駛之法律草案,亦即道路交通法修正法(Änderung des Straßenverkehrsgesetzes),核心在於賦予電腦與人類駕駛者法律上同等地位。亦即,駕駛人的定義未來擴張延伸到「使用不同程度自動駕駛系統者」。根據草案將來在車輛行駛中,人類可以在特定時間與特定狀況下接管整個行駛。而最重要的修正:人類始終應該負使用電腦的最終責任。
故在行駛中駕駛人將會被輔助機器替代,更要求自駕系統應該具備“隨時可以由駕駛人接手操控或停俥”的功能。 分類中,駕駛人的角色只有到全自動駕駛實現時才退場,屆時才會發生無駕駛人只有乘客的狀況。
修法也重視自駕技術失敗並導致事故所生責任分擔的問題。對於責任的調查將採用如同飛航安全中之「黑盒子」的方式,該裝置會記錄行駛中的所有基本資料。這將有助於發生事故後澄清,查明究竟是技術上原因、製造商或駕駛員的過失,以確保駕駛人無法將責任全部推給自動化系統的故障。
本文為「經濟部產業技術司科技專案成果」
UCLA醫學中心以開放原始碼軟體Zope建置資訊系統,展開一項稱為「治療成效開放式架構」(OIO, Open Infrastructure for Outcomes) 的計畫,構築起未來醫療資訊系統的新基石。讓治療成效的資訊,能在一個共通的平台架構上進行資源分享。 長期以來,醫療資訊系統面臨的挑戰主要來自於下列三個面向:一、如何讓資訊系統提供令人滿意的服務功能,以取代將醫療記錄登載在紙張上的傳統方式。二、資訊系統的需求經常會改變,如何快速因應系統的改變需求。三、如何與其他醫療團隊夥伴,共同分享資料與工具。 OIO計劃透過資訊共享可加速醫療研究。開放式架構計畫的主要目的,並不是用來要求臨床工作者與醫療研究中心分享病歷資料,而是提供一個分享管理工具的機制,讓使用者能夠利用這些管理工具,進行資料的收集與分析,並和特定的診療研究人員進行溝通,而透過系統安全的機制,在過程當中並不會讓其他人得知資料內容。不過,如果有人想要進行管理工具或資料的進一步加值利用,僅需額外投入相當小的成本。 另外, 開放式架構計畫的設計極具彈性,除了目前所專注的治療成效資訊統計之外,其系統概念也可以用來管理客戶資訊、進銷存資訊、會計資訊等。整個系統開發環境是針對使用者而設計,而非程式人員,並且以網頁應用程式來實作,力求操作的便利性,目的之一是讓使用者能夠動手創造出自己所需的表格資料。另一方面,設計上也面對來自於法律與技術層面的挑戰,例如取得病患的同意及對系統的信任感,促使這套系統在實作時,必須能夠提供高度的修改彈性與安全性。 由於 OIO 在設計上,包含低成本、高效益、使用者導向、架構具有彈性等特色,並以開放源碼開發模式來鼓勵使用者測試及提供回饋意見,目前的應用效果持續擴大中。
英國競爭與市場管理局將有條件核准Vodafone與Three UK 的合併.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 英國兩家電信業者Vodafone與Three UK(下合稱「合併方」)於2023年6月宣布將以合資的方式合併,英國競爭與市場管理局(Competition and Markets Authority, CMA)於2024年12月5日就本案提出最終審查報告,決議將有條件核准合併。 合併方於審查過程中承諾在8年內於全國各地建設各頻段基站,確保行動網路涵蓋範圍、容量和速度的顯著提升並迅速布建5G,目標在2030年讓全英國的學校與醫院都能使用獨立組網(不依賴4G網路)的5G服務(5G SA)。同時其與另一家電信業者VMO2的網路共享協議中,亦提出若合併案通過後,在未來10年將額外投資110億英鎊於網路建設,並將出售部份頻率資源予VMO2。 CMA 認為本案對市場競爭及消費者權益確實可能造成諸如資費上漲或服務條件降低等負面影響,但考量合併方如能履行其網路建設計畫提案及網路共享協議,長期而言能夠顯著提高英國的行動網路品質,能促進市場的有效競爭並最終使消費者受益,合併方亦承諾於三年內對消費者保留某些既有的資費方案,以及對行動虛擬網路業者(Mobile Virtual Network Operator, MVNO)履行預先約定的價格與服務條款,以消除短期內潛在的負面影響。 後續CMA將與合併方及利益相關方協商並召開公開諮詢以確定具法律效力之承諾細節,相關建設承諾亦將由英國通訊管理局(Office of Communications, Ofcom)納為合併方頻率執照之附帶條件,未來將由CMA與Ofcom共同監督承諾之履行,CMA可對未履行承諾之行為裁罰,而Ofcom最重則可撤銷頻率執照。
日本透過「產業財產權人才培養協力事業」支援發展中國家智慧財產人才培養,消除企業於發展中國家進行經濟投資或活動時所面臨的智慧財產權相關妨礙2024年2月,日本專利廳根據公開招募結果,公布將由一般社團法人發明推進協會執行令和6年度的「產業財產權人才培養協力事業」。 日本自2021年起開始推動「產業財產權人才培養協力事業」,至今年已邁入第4年,且自2024年起預計於南非共和國開設新的專利審查實務課程,以提升南非共和國專利審查官的必要能力。 「產業財產權人才培養協力事業」主要針對日本企業進行海外經濟投資及活動熱門的發展中國家(包含新興國家以及最低度開發國家LDC),提供積極性的人才培養支援,並以強化該國家能安定培養智慧財產相關權利取得與執行的實施人才為目的。在法制整備較為落後的最低度開發國家如柬埔寨,人才培養強化支援的範圍亦包含產業財產權制度的整備。人才培養的對象以智慧財產廳的職員、取締機關的職員以及民間的智慧財產關係業者為重點,透過提升其對於智慧財產權的能力,解決日本企業為在外國取得產業財產權的權利保護需要花費大量時間、日本企業的產業財產權在外國受到侵害的案件逐年增加等問題,以消除日本企業在外國進行經濟投資及活動時的巨大妨礙。 日本專利廳亦針對研修方針下列事項提出建議: 1、消除發展中國家審查延遲的對應方針 於研修中透過增加案例閱讀、資料尋找演習等的講義時間,提升尋找能力及判斷能力;並透過學習日本的IT系統、業務處理過程,提升系統面的支援能力。 2、提升發展中國家審查品質的方針 透過學習日本的基準、判斷手法提升審查、審判的品質;並透過學習日本的管理手法,提升審查品質管理能力。 3、仿冒品對策的對應方針 透過介紹以日本及各國事例為基礎的支援,加深對於仿冒品對策的理解;並透過增加與實施健全執法相關聯的講義時間,加深對於仿冒品對策的一般理解。 4、建構更有效果的研修方法的對應方針 透過設置課程全體的導師制度(mentor),提升研修效果的同時,有效活用「線上」及「實體」連續性的混合研修方法,並透過於實體研修中實施團體討論、在職訓練(OJT)、案件閱讀、模擬裁判(Mock Trial)等,提升實踐能力。 本文後續會持續留意日本「產業財產權人才培養協力事業」的發展,以掌握日本對於發展中國家支援的最新資訊。我國企業如未來預計於發展中國家進行經濟投資或活動時,亦應注意該國智慧財產權之程度,以評估相關風險。 本文同步刊登於TIPS網(https://www.tips.org.tw)
運用AI工具協助管理智慧財產組合(IP Portfolio)之方式美國實務界律師2023年6月9日撰文指出,人工智慧(artificial intelligence,簡稱AI)將對智慧財產法律和策略帶來改變,大部分企業熟悉的改變是目前仍有爭議的法律問題—由AI工具產生的發明創造是否為專利或著作權適格的保護標的。但除此之外,AI工具對於創建和管理智慧財產組合(IP Portfolio)的方式也已發生改變,並介紹以下五種利用AI工具協助管理智慧財產組合之方式。 1.簡化先前技術之檢索 無論是評估新產品的可專利性、評估競爭對手之智慧財產權之相關風險、抑或是回應侵權索賠,企業均須了解特定領域之先前技術,因應此需求,全球已有大量公司提供先前技術檢索服務,惟AI工具的出現使得企業可自行進行先前技術檢索。例如知名的文件審查平台Relativity創造了Relativity Patents,使用者輸入專利號碼等特定關鍵字即可進行先前技術檢索;美國專利商標局亦為了審查官開發一種AI工具,提升其確認先前技術之準確性及效率。 2.協助專利申請文件撰寫 對於專利申請人而言,可使用AI工具協助草擬專利申請範圍,有些企業甚至會運用AI工具自動化撰寫專利申請文件,惟使用AI工具撰寫專利申請文件時,應留意提供AI工具的資料是否會保密,抑或有向第三人提供之風險。此外,AI工具撰寫之內容建議仍須雙重確認內容正確性及適當性,如引用來源及內容是否正確。 3.改善商標維權能力 企業可使用AI工具協助監控潛在的侵權及仿冒產品,有鑒於現今網站及社群媒體仍有大量未經商標授權的賣家存在,AI工具可作為審查貼文及識別商標侵權案件之工具,相較於傳統的人工審查可更有效率。 4.協助商標檢索作業 於美國、澳洲、歐盟、中國,甚至世界智慧財產組織導入AI工具協助審查官進行商標審查,包括以關鍵字及影像標記之搜尋功能,此一工具不僅可簡化商標申請和註冊審查程序與時間,亦有部分國家提供使用者自行檢索之功能,使企業可進行更快速、有效率之商標檢索,使其於品牌保護策略上節省不必要之時間及金錢。 5.支持策略性專利組合管理 AI工具亦可協助專利組合管理,包括最廣的專利範圍、評估是否需繼續維護專利、或是評估擬收購專利之價值,以AI工具協助評估以上事項,雖無法完全取代人工進行策略評估,惟可顯著減少勞動力支出。 AI工具改變了智慧財產組合創建及管理之方式,雖然AI工具不能完全承擔管理智慧財產權組合之職責,但AI工具在專利/商標檢索、專利申請文件撰寫、專利權評估、商標維權等方面已可大量減少人力及管理成本,有助於企業智慧財產組合管理,惟企業及使用者須留意使用AI工具的資料管理問題,以避免機密資訊遭到外洩。 本文同步刊登於TIPS網站(https://www.tips.org.tw)