自動駕駛車輛之分級與責任

  所謂自動駕駛(autopilot),原來是指一個用來控制載具軌道而無需人工一直干預的系統,亦即無須人類持續干預,但人類仍須於關鍵時刻介入進行決定或作為,此時機器僅作為輔助。

  而自動駕駛汽車或稱全自動駕駛,則只完全無須人類干預,由機器自動感應偵測,自動做成決策控制車輛行駛。故由人類的介入程度區別究竟是駕駛輔助或自動駕駛。美國國家公路交通安全管理局(NHTSA)於2016年已提出正式的分類系統,除手動駕駛(0級)外,區分弱駕駛輔助(1級)、部分自動駕駛(2級)、有條件全自動(3級)、高度/完全自動化(4級)不同程度的自動駕駛。其他國家如德國,在聯邦政府的「自動駕駛圓桌會議」也對自動駕駛有類似的四等級區分。

  德國聯邦政府也在於2017年1月25日提出規範自動駕駛之法律草案,亦即道路交通法修正法(Änderung des Straßenverkehrsgesetzes),核心在於賦予電腦與人類駕駛者法律上同等地位。亦即,駕駛人的定義未來擴張延伸到「使用不同程度自動駕駛系統者」。根據草案將來在車輛行駛中,人類可以在特定時間與特定狀況下接管整個行駛。而最重要的修正:人類始終應該負使用電腦的最終責任。

  故在行駛中駕駛人將會被輔助機器替代,更要求自駕系統應該具備“隨時可以由駕駛人接手操控或停俥”的功能。 分類中,駕駛人的角色只有到全自動駕駛實現時才退場,屆時才會發生無駕駛人只有乘客的狀況。

  修法也重視自駕技術失敗並導致事故所生責任分擔的問題。對於責任的調查將採用如同飛航安全中之「黑盒子」的方式,該裝置會記錄行駛中的所有基本資料。這將有助於發生事故後澄清,查明究竟是技術上原因、製造商或駕駛員的過失,以確保駕駛人無法將責任全部推給自動化系統的故障。

本文為「經濟部產業技術司科技專案成果」

※ 自動駕駛車輛之分級與責任, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7738&no=67&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

歐盟2020年人工智慧白皮書

  歐盟執委會於2020年2月19日發布「人工智慧白皮書」(White Paper on Artificial Intelligence: a European approach to excellence and trust),以打造卓越且可信賴的人工智慧為目標。歐盟認為在推動數位轉型過程中的一切努力,均不應脫離歐盟以人為本的最高價值,包含:開放(open)、公平(fair)、多元(diverse)、民主(democratic)與信任(confident),因此在人工智慧的發展上,除了追求技術的持續精進與卓越外,打造可信賴的人工智慧亦是歐盟所重視的價值。   歐盟執委會於人工智慧白皮書中分別就如何追求「卓越」與「可信賴」兩大目標,提出具體的措施與建議。在促進人工智慧卓越方面,執委會建議的措施包含:建立人工智慧與機器人領域的公私協力;強化人工智慧研究中心的發展與聯繫;每個成員國內應至少有一個以人工智慧為主題的數位創新中心;歐盟執委會與歐洲投資基金(European Investment Fund)將率先在2020年第1季為人工智慧開發與使用提供1億歐元融資;運用人工智慧提高政府採購流程效率;支持政府採購人工智慧系統等。上述各項措施將與歐盟「展望歐洲」(Horizon Europe)科研計畫密切結合。   而在建立對人工智慧的信賴方面,執委會建議的措施則包含:建立有效控制人工智慧創新風險但不箝制創新的法規;具高風險的人工智慧系統應透明化、可追溯且可控制;政府對人工智慧系統的監管程度應不低於對醫美產品、汽車或玩具;應確保所使用的資料不帶有偏見;廣泛探討遠端生物辨識技術的合理運用等。歐盟執委會將持續徵集對人工智慧白皮書的公眾意見,並據以在2020年底前提出成員國協力計畫(Coordinated Plan)之建議。

國際能源總署發布「擴大轉型金融」報告,旨在說明如何透過金融機制協助高碳排部門邁向淨零

國際能源總署(International Energy Agency, IEA)於2025年10月16日發布「擴大轉型金融」(Scaling Up Transition Finance)研究報告,提出轉型金融應與綠色金融作為能源轉型的互補工具,並進一步分析轉型金融的前景與推動建議。 轉型金融是指有助於減排的金融活動,特別適用於難以減排的產業及資金需求高、但綠色金融支持有限的新興市場及發展中經濟體。報告重點分析轉型金融三大領域,並說明各產業投資方向即可量化的減碳目標,重點如下: (1)重工業:鋼鐵及水泥業合計約占全球能源燃燒與製程排放之14%,主流投資仍集中於傳統高碳排製程,導入轉型金融,除可支援中短期減碳措施外,亦能鼓勵企業於設施設計階段預留導入低碳技術之條件(即具「可改造性」,retrofit-ready),避免產生「高碳資產鎖定」與「無法回收之投資風險」。IEA建議,應結合國家層級減碳指標與產業路徑,將轉型金融納入減碳政策框架,並鼓勵金融機構明確區分綠色金融與轉型金融投資組合。 (2)關鍵原物料:原料開採與冶煉雖屬能源轉型必要條件,但亦產生排放量高、高耗水量、土地劣化與生物多樣性流失、及社會與治理風險。轉型金融則可支持低排放技術、改善ESG表現,並促進高影響力投資。IEA建議,應建立礦業轉型金融標準與績效指標;政府與多邊開發銀行應提供保證或融資機制;加強資料透明與監測機制;統籌國際供應鏈治理與稅收誘因。 (3)天然氣:IEA強調,轉型金融可協助天然氣產業減排改造,並推動替代性低碳氣體基礎建設發展,但不得成為長期依賴化石燃料之藉口,因此應用優先順序應為甲烷減量、液化天然氣減排、低排放氣體基礎設施、電力系統調節角色。且必須符合透明性、時限性及一致性等條件。其目的在於支援能源轉型初期之電力穩定與彈性,並為未來低碳氣體基礎設施鋪路。 轉型金融強調企業與金融機構的實質合作,當前挑戰在於擴大資金流與明確界定「轉型」特質。IEA建議,推動轉型金融須兼顧新興市場與中小企業參與,並強化產業別績效指標、改造潛力設計及定期審查。此外,轉型金融應提升為全球減碳融資之第二支柱,藉此面對難以減排之領域,並確保投資帶來實質減碳與能源安全等效益。

日本經產省發布《促進資安攻擊受害資訊共享檢討會最終報告書》,以加速資安情資共享

日本經濟產業省(下稱經產省)於2023年11月22日發布《促進資安攻擊受害資訊共享檢討會最終報告書》(サイバー攻撃による被害に関する情報共有の促進に向けた検討会の最終報告書),主張共享資安攻擊受害資訊,掌握資安攻擊全貌,防止損害範圍擴大。經產省提出具體建議如下: 1.促進各專門組織間之資訊共享:藉由專門組織間的資訊共享,及早採取適當因應措施,避免損害持續擴大,並降低受害成本。所謂專門組織包含資安廠商、資安監控中心(Security Operation Center, SOC)營運商、防毒廠商,與依法令成立從事資安事件諮詢與分析之非營利組織,例如:一般社團法人日本電腦網路危機處理暨協調中心(一般社団法人JPCERTコーディネーションセンター),以及一般財團法人日本網路犯罪對策中心(一般財団法人日本サイバー犯罪対策センター)等。 2.共享無從識別受害組織之資訊:為加快資訊共享,經產省建議將資料去識別化至無從識別受害組織之程度,即可不經受害組織同意而共享資訊。 3.提出《攻擊技術資訊處理與活用指引草案》(攻撃技術情報の取扱い・活用手引き(案)):為提升專門組織共享資訊成效,經產省於指引中彙整受害組織資料去識別化作法,以及各專門組織間共享攻擊技術資訊之具體策略。 4.於保密協議中加入免責條款:經產省建議於受害組織與專門組織簽訂之保密協議中,加入專門組織免責條款,使專門組織具有利用或揭露攻擊技術資訊裁量權,對於利用或揭露資訊,致生受害組織被識別等損害時,非因故意或重大過失不須負擔法律責任,以利推動資訊共享。

TOP