美國公布「保護資通訊技術與服務供應鏈安全」行政命令

  美國總統川普於2019年5月依據「國際緊急經濟權力法」(International Emergency Economic Powers Act, IEEPA)之授權,訂定「保護資通訊技術與服務供應鏈安全」行政命令(Executive Order on Securing the Information and Communications Technology and Services Supply Chain)。目的係為避免因具有競爭關係之外國政府或機構,利用其設計、開發或製造之資通訊技術或相關服務之資安漏洞進行資料竊取或網路攻擊等行為。

  川普總統認為,如未能對於相關之資通訊技術、產品或服務進行管制,將有提升美國資安風險之疑慮,進而對美國之國家安全、外交政策及經濟構成威脅,故應針對具有競爭關係之外國政府或機構所提供的相關資訊與通訊技術或服務,進行下列相關之措施:

  1. 禁止美國境內之相關單位(包含合夥、協會、信託等機構、合資企業、公司、集團或其他組織)取得、進口、轉讓、安裝、交易或使用具有資安風險而由競爭關係之外國政府或機構所擁有、控制、設計、開發、製造或供應的資通訊技術或服務。
  2. 授權由商務部長訂定具有競爭關係之外國政府或機構、資通訊技術或服務及上述禁止措施之相關認定標準及程序。
  3. 商務部長應與國務卿向國會提交本命令之經常性及最終報告;而國家情報總監及國土安全部,則應持續針對美國所面臨之相關風險威脅進行定期之識別與評估,並將評估內容提交予總統。

相關連結
你可能會想參加
※ 美國公布「保護資通訊技術與服務供應鏈安全」行政命令, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=67&tp=1&d=8371 (最後瀏覽日:2025/02/13)
引註此篇文章
你可能還會想看
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

FDA發佈「拒絕接受510(K)審查申請之政策」指導文件草案

  醫療器材在美國上市所需依循的途徑,為申請510(k)審查或上市前審查(Premarket Approval, PMA)。順序上第一步,必須在90天前向美國食品藥物管理局(U.S. Food and Drug Administration, FDA)提出「上市前通知」(Premarket Notification, PMN)申請。所謂的510(K),係指美國《食品、藥物及化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)第510節之規定,在申請的流程中,FDA會審查廠商所提出的佐證,是否具備與已上市的相同器材一樣之「實質相等性」(Substantial Equivalence),若不具備「實質相等性」,即必須進入PMA申請程序。   FDA指出過往機關接受許多不適當的501(K)審查申請,而必須要求這些不適當的申請廠商進一步補充文件,以進行實質審查。FDA指出這樣的程序,進行過度頻繁的審查,而浪費不少寶貴的資源及人力。FDA於2012年8月10發佈「拒絕接受510(K)審查申請之政策」指導文件草案。作為改善與加強501(K)申請流程之效率與有效性。新的指導文件草案之改善目標,係要求廠商必須提出傳統(Traditional)、特殊(Special)、簡略(Abbreviated)三種不同的申請所需之審查文件,FDA會先進行審查文件是否具備的預先審核,始進行實質審查。廠商必須依照指導文件草案內含的核對表(Checklist)所規定必須提交之審查文件,FDA有15天的時間回應廠商是否完成繳交,或要求廠商在新的15天之內補件,而承認 (Acceptance)形式審查完備,始進行實質審查。廠商亦可針對缺繳之文件,說明不提供之理由,並提出相關證明。指導文件草案提供以下幾個準則,提供審查機關審視核對表完備與否: 該產品是否為器材; 該項申請之對象是否正確; 是否為適當合法510(k)申請; 是否有相同的器材經PMA程序核准上市; 所提出的臨床數據,申請者是否受限於「申請規範政策」(Application Integrity Policy, AIP)。   FDA透過這樣預先審查之方式,檢視廠商所提出之申請,是否符合形式的要件,而決定是否進行實質審查,以避免浪費行政機關的資源與人力進行不適當的審查,希冀改善FDA目前501(k)審查申請制度之效率與有效性。

加拿大在商展中展現數位內容產業之實力

加拿大領導廠商 ICTV ,在 NCTA 國家商展 (NCTA National Show) 中,帶來了加拿大在互動電視內容方面的最新科技展現。 ICTV 是著名產品 HeadendWare 的製造商,此產品是在寬頻產業中傳輸互動電視內容最強大的平台。此一平台目前已取得多家加拿大廠商的協力合約,將共同在此平台上發展遊戲、娛樂與資訊內容等將關服務。   ICTV 解決方案部門的主管表示,加拿大確實是在互動數位內容方面的技術領先國家,並且正持續吸引更多的廠商與其合作。確實,加拿大的科技產業在全球屬領先地位,過去國內廠商對於新科技的注意力,大都放在美國、歐洲及日韓等國,或許,對加拿大進行更深入的關心與瞭解,可以挖掘到更多的報寶藏。

保護、分級與言論(下)

TOP