標準制定組織成員之專利揭露義務

  標準制定組織為了提高產業競爭,防止標準制定組織之會員們,在獲得涵蓋產業標準的專利權後,以壟斷性手段壓迫其他競爭對手,故通常會以智慧財產權政策要求參加的會員揭露其被標準制定組織選擇寫入標準的專利。其重要內容通常包括:

  1. 必要專利揭露
許多標準制定組織皆有規定,標準必要專利權人應依以誠實信用及適當方式進行揭露之義務,例如IEEE及ETSI 。即對於討論中的技術標準,必須對標準制定組織及其參與者公開揭露所持有的必要專利。揭露的基本目的主要有三項 :
  (1) 使標準開發相關工作小組會員可以掌握納入標準之多項候選技術的基本資訊(例如專利技術價值、成本及可行性等等),並做出適當選擇。
  (2) 藉此得知須提出授權聲明或承諾的必要專利權人。
  (3) 藉此讓必要專利的潛在實施者得知應向那些必要專利權人獲取必要專利相關資訊。

  2. 事前揭露授權條款(ex-ante disclosure of licensing terms)
  事前揭露授權條款係一種受保護之技術在被採納為標準必要專利前,將授權條件的揭露的機制,目前IEEE及ETSI採行自願性揭露方式。與必要智財權的揭露及授權聲明不同,其主要的目的在於讓標準制定委員會將技術採納為標準前,可以根據所揭露的授權條件來決定有那些技術在符合權利人授權條件下,有哪些技術可以納入標準,又有哪些不同替代技術,並據以作成決定 。

本文為「經濟部產業技術司科技專案成果」

※ 標準制定組織成員之專利揭露義務, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7745&no=16&tp=5 (最後瀏覽日:2024/11/23)
引註此篇文章
你可能還會想看
日本經濟產業省公布獲選2021年數位轉型品牌之企業名單

  日本經濟產業省(下稱經產省)與東京證券交易所共同選出「數位轉型品牌(下稱DX品牌)」,並於2021年6月7日公布獲選「DX品牌2021」、「DX關注企業2021」的企業名單。獲選的企業不僅導入優良的資訊系統、活用數據,並以數位技術為基礎的創新商業模式及管理方法勇於挑戰變革,預期能將數位技術發揮到最大的作用。   DX品牌評價的項目包含企業的願景、商業模式、經營策略、數位技術策略實施成果與重要成果指標的公開共享、公司治理。為了加強鼓勵企業推動數位轉型,經產省與東京證券交易所從獲選「DX品牌2021」的企業名單中,再選出「DX大賞企業」,作為數位時代的領導企業。另外,今年度針對因應新冠肺炎採取優良數位技術對策的企業,又特別選出「數位×新冠肺炎對策企業」。   DX品牌即為舊有的「進攻IT管理品牌」。「進攻IT管理品牌」是經產省於2015年至2019年,為了促進日本企業在IT上的運用,與東京證券交易所共同選出積極運用IT的企業為「進攻IT管理品牌」。直到2020年後,因應數位技術產生新興的商業模式,經產省推動企業從IT運用轉向數位轉型技術,並將「進攻IT管理品牌」改為「數位轉型品牌(DX品牌)」。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

美國Farmers Insurance Group在加州以竊取營業秘密為由控告前員工以及Automobile Club of Michigan

  2017年10月,美國知名保險公司Farmers Insurance Group(下稱Farmers)在加州法院提訴,控告前員工Venkatesh Kamath(下稱Kamath)、前資訊長Shohreh Abedi(下稱Abedi)和競爭對手American Automobile Association(下稱AAA協會)旗下的Automobile Club of Michigan(下稱Auto Club)竊取營業秘密。   Farmers聲稱,於2015年起使用Guidewire Software(下稱Guidewire),以更新其理賠處理和保險服務系統。Kamath因Guidewire業務,接觸到Farmers高度敏感與機密資訊。Abedi前為Kamath上司,曾監督Guidewire計畫初期階段。之後Abedi至Auto Club任職,協助Auto Club轉換使用Guidewire,並挖角包括Kamath在內許多Farmers員工。Kamath離職前,從Farmers電腦中拷貝超過6400份檔案,其中包括與Guidewire計畫及Famers核心業務相關的營業秘密資訊。   Farmers控訴Kamath、Abedi及Auto Club違反加州營業秘密法(California Trade Secret Act)、從事不公平競爭、違反忠實義務及其他事由,除訴請賠償外,也請求法院禁止被告使用其營業秘密。   本案非Farmers與AAA協會首次因營業秘密事宜而對訟。2010年間,Farmers曾控告AAA協會旗下Auto Club Group竊取其投保客戶機密資訊,惟該案當時經法院以Farmers未能證明有何損失或損害為由,駁回其訴。Farmers公司於2017年10月對Auto Club提起的本件訴訟,法院實務的發展為何,值得後續觀察。

臺北高等行政法院103年度訴更一字第120號判決對健保資料作目的外運用之態度

TOP