美國線上服務(AOL)找到改善公司資金短缺的問題。主要出售該公司800項並將其他相關專利授權予微軟(Microsoft)使用,共獲得總價10.6億美元。這也使得AOL的生存獲得機會,但也同時減低AOL的價值。 AOL出售專利主要是因為公司股東認為AOL無法利用專利為公司賺得應有的利益,因此出售大多數的專利給微軟,且將留下300項專利權,同時授權予微軟使用,其技術主要為廣告、搜尋、網際網路、多媒體等其他相關專利。 AOL將出售專利所獲得現金收入,大部分提供給股東。消息公佈後,雖微軟股價下降1.1%,而AOL股價卻上漲43%,每股26.2美元。整體而言,微軟期望透過此專利交易,比起AOL更有效率獲取收益,而AOL出售專利的同時,也喪失未來透過這些專利獲得收入的機會;當AOL的股東看似獲得龐大的回饋金,他們也同時失去未來無法預期的更大的利益回饋。 微軟將透過這800件專利新武器迎戰正在進行的科技競爭訴訟。當然微軟不是唯一提出訴訟的公司。近幾年幾家科技公司,谷歌(Google)、甲骨文公司(Oracle)、及蘋果公司(Apple)亦捲入專利訴訟。小型公司在訴訟中往往比較弱勢,但亦有成功的案例。如,微軟需支付專利訴訟賠償金額加上判決訴訟費用,共2.9億美元給I4i公司。
谷歌,蘋果商談競標已破產的柯達專利根據華爾街日報報導指出,蘋果及谷歌將聯合競標柯達公司所釋出的專利組合。 在智慧型手機市場上蘋果和谷歌互為競爭對手,原訂在柯達專利拍賣案中,兩家企業提出1億5仟萬美元至2億5仟萬美元金額進行競標活動,改協議採合作結盟競標方式,以較低的金額獲得柯達的專利。 華爾街日報引據熟悉此項談判之人士指出主要電子產業公司,如Samsung(三星)、LG(樂金)及HTC(宏達電),及其他以透過購買專利作為投資或保護公司營運為目的之企業亦有參與。 柯達為規劃重新成為印刷領域的專業,需藉由販賣其所擁有的1,100件數位影像專利以籌措資金,在今年年初,柯達評估所有專利價值為26億美元(21億歐元) 而柯達對外發布買方非常踴躍於此次競標活動中,但目前尚未可以公布結果,將無限期限地延長拍賣時間,主要柯達是希望蘋果及谷歌能在所釋出的專利中,進行一場專利競標的競賽。
紐約通過法案,將禁止企業使用未能通過偏見審計的自動化招募系統紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。 於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。 如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。
IBM Watson Health與FDA合作研究區塊鏈技術之醫療運用根據專利資料庫公司IFI CLAIMS公佈2016年美國專利統計報告,IBM以8,088件專利再度蟬聯冠軍,其中多著重在人工智慧(artificial intelligence)、認知運算(cognitive computing)、及雲端(cloud)等技術領域,也有健康醫療相關專利。 近期IBM Health與美國食品藥品管理局(U.S. Food and Drug Administration)展開兩年期之合作研究,透過區塊鏈技術(blockchain)以安全且去中心化的方式進行數據共享,如:交換電子病歷、臨床試驗、基因數據、甚至過去難以取得的病患行動與穿戴裝置數據及物聯網(Internet of Things)數據等。 傳統上病患的病歷資訊存放於各診療單位或醫療機構,造成資訊管理效率及互通性較低,在區塊鏈技術的架構下,有效率的將大量且多樣的醫療數據進行彙整,並藉審查追蹤紀錄以防止竄改,提升病歷數據傳輸管理的可靠性及安全性。在如此多元化的醫療數據共享環境下,有助於醫療診斷、更將能促進產業發展。 此外,過去病患穿戴裝置所測得的日常生理數據,不管在數據取得、或將該些數據應用至臨床診斷上皆存有許多問題,如今區塊鏈技術將能提高物聯網數據資訊之整合性。依調查顯示,預計有80%新創組織採用區塊鏈技術於物聯網數據管理與應用上。 其他應用商機更包括居家監控、慢性疾病管理、藥物整合(medication reconciliation)及供應鏈管理等。IBM預估,至2017年底將會有16%的健康醫療機構採用以區塊鏈技術為架構的管理工具,並預測十年內採用比例將達72%。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」