強制蒐集人體生物資料的人權標準-聯合國人權事務委員會的見解

刊登期別
第28卷,第11期,2016年11月
 
隸屬計畫成果
自主研究
 

※ 強制蒐集人體生物資料的人權標準-聯合國人權事務委員會的見解, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7760&no=67&tp=1 (最後瀏覽日:2025/11/30)
引註此篇文章
你可能還會想看
美國國家寬頻計畫簡介

日本經濟產業省公布自動駕駛後續之政策方針報告書

Syngenta位於巴西Parana的基改研究機構遭到當地政府沒收

  瑞士跨國種子及作物科技公司Syngenta AG (SYT)正與巴西政府為基改活動展開訴訟。去(2006)年11月9日,Syngenta在巴西境內基改作物研究機構被迫關閉,研究機構所在地的Parana州州政府並以Syngenta違反巴西聯邦環保法規為由,沒收其所有投資的資產。Parana州境內有一座自然保護區-伊瓜蘇國家公園,伊瓜蘇國家公園是舉世著名的伊瓜蘇瀑布(Iguacu Falls)的所在地。根據巴西聯邦環保法規規定,基改作物不得栽種於自然保育區的十公里以內。   Syngenta位於Parana州的基改研究機構佔地達123公頃,然而距離伊瓜蘇國家公園卻僅約有六公里。1986年以來,Syngenta即已擁有該研究區域的產權,目前Syngenta已向巴西聯邦法院提出告訴,主張其得以合法在研究機構所在地進行相關研究。Syngenta抗辯理由主要有二:其一,Syngenta在該地進行基改作物田間試驗的許可,是由巴西聯邦政府的生物安全主管機關CTNBio所核發;其二,2006年初,巴西總統已將前述10公里的栽種間隔距離更改為500公尺。Parana州政府、巴西環境保護局Ibama、主張農業改革的活動份子等則主張,新的500公尺間隔規定不適用於Syngenta,蓋該公司早在巴西總統簽署新規定以前即已展開相關的試驗活動,Parana州環保主管機關早已祭出處罰,但Syngenta迄今未繳納罰鍰。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP