產業競爭力強化法新發展-以企業實證特例制度實例為中心

刊登期別
第28卷第11期,2016年11月
 

本文為「經濟部產業技術司科技專案成果」

※ 產業競爭力強化法新發展-以企業實證特例制度實例為中心, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7769&no=64&tp=1 (最後瀏覽日:2026/01/16)
引註此篇文章
你可能還會想看
德國推行氣候保護協議和綠色領導市場措施,加速基礎工業氣候中和技術發展

德國經濟及氣候保護部科學顧問委員會於2023年2月8日公布《向氣候中和產業轉型:綠色領導市場和氣候保護協議》(Transformation zu einer klimaneutralen Industrie: Grüne Leitmärkte und Klimaschutzverträge)報告,擬透過綠色領導市場(Grüne Leitmärkte)和氣候保護協議(Klimaschutzverträge)兩種工具措施,在基礎⼯業中⼤規模推廣氣候中和⽣產技術。 科學顧問委員會指出,目前僅靠碳定價已無法調整在氣候保護面向的市場失靈問題,加上基礎工業(例如鋼鐵、水泥、合成氨等)的氣候友好型技術投資上缺乏經濟效益,因此政府需要採取額外措施來實現基礎工業的氣候中和。 綠⾊領導市場則是國家建立或支持以氣候中和⽅式⽣產的原物料(例如綠⾊鋼鐵)的市場,政府採購中可優先使⽤綠⾊原料,也可以透過監管措施,規定私⼈和企業在⼀定範圍內只能使⽤含有⼀定⽐例綠⾊原料的產品。氣候保護協議則是國家與企業間,就⽣產氣候友好型產品簽訂契約,保證企業將獲得15年的補償⾦,以補償採行氣候中和⽣產術所產生較⾼的成本,同時亦保護企業免受碳定價波動和其他⾵險的影響。

歐盟發布電信單一市場改革草案

  歐盟執委員會於2013年9月提出新電信改革方案初步細節,期待建立歐盟電信服務單一市場,以加快經濟增長,創造就業機會和恢復歐洲在行動通訊技術領域的領先地位。   該提案將擴大歐盟的電信管制權力,協調各會員國管制機關,包括審查各會員國之國家電信發展政策、無線頻的釋出和拍賣頻,使會員國管制機關撤銷違反歐盟法律的作為。   歐盟內部之電信漫遊價格上限將維持,但將由2014年開始逐年降低;另外將於2014年推動漫遊時,接收來電免費。為了進一步促使降低漫遊價格,歐盟計劃鼓勵各家電信業者推出泛歐的通訊費率。這將形成一個類似的跨國電信營運許可,只要獲得歐盟內某一個會員國管制機關的許可後,便能在泛歐範圍內推出電信服務。歐盟也希望看到各會員國固網電信的價格持續下降,達到與國內長途電話同樣水平的價格。   執委會也在該草案中提出,將致力於規範寬頻網路接取的批發價格管制,以及其他各類行電信服務批發市場的管制。此外,歐盟將推動完整的、統一的消費者保護規則,以防止各會員國管制機關的保護不足。   為了鼓勵更快地釋出無線頻譜資源,歐盟希望制定授權釋出頻譜的共同規則,而且也將以獎勵誘因鼓勵市場參與者釋出頻譜用於行動寬頻市場,並且將建議如果頻譜使用效率過低,業者將可能被取消執照。電信業者也將被允許一定的頻譜交易,以鼓勵歐盟基礎設施交易。   最後該草案針對「網路中立」的問題也提出解決方案,將禁止電信市場的競爭業者之間,有將網路服務阻斷或降低網路傳輸優先權的舉措。電信業者將需要提供的更透明的寬頻網路連線實際速率資訊,降低「誤導性的廣告」損害消費者權益。然而,電信業者也能夠提供更高的連線速度,或較佳的網路傳輸品質保證,使客戶支付較高的價格取得較優質的服務。   歐盟認為歐洲的戰略利益和經濟進步,與泛歐電信單一市場的建立密不可分的,同時希望藉由本次改革,提供歐盟公民充分、公平、高品質、普及的網際網路與行動通訊服務。

Google新版桌面搜尋工具引發隱私權顧慮

  Google在2006年2月11日推出最新版的桌面搜尋工具Google Desktop 3,它的最新功能可以讓用戶同時搜尋多台電腦的資料。當啟用這項功能後,它會將電腦裡的文件和文字檔案(如Word、Excel)內容予以複製上傳到Google的伺服器上。當用戶在一台電腦搜尋資料時,也會在其他台安裝此工具的電腦自動開始搜尋。Google 表示,目前已經有很多人同時使用數台電腦,這個新功能可以讓使用者的生活更為便利。   但是倡導網路隱私權的團體Electronic Frontier基金會卻表示憂慮。由於新功能可能會讓駭客更容易盜取用戶個人資料,用戶的個人隱私將面臨更大的威脅。該基金會律師Fred von Lohmann認為,使用者應重視個人資料被放在Google伺服器上可能產生的問題,這比便利性更為重要。因為使用時若未花時間處理功能選項和設定問題,它將可能導致個人資料諸如納稅、醫藥和財物紀錄,以及其他文字檔案等資料外洩。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP