安全至上 監看有理?-論工作場所電子郵件監看法制爭議

刊登期別
2004年
 

相關附件
※ 安全至上 監看有理?-論工作場所電子郵件監看法制爭議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=779&no=64&tp=1 (最後瀏覽日:2025/12/13)
引註此篇文章
你可能還會想看
韓國通過網路電視法案

  由於新興通訊技術的應用與網路頻寬的快速成長,透過網路收看電視已不再是遙不可及的科技願景。網路電視(Internet Protocol Television;IPTV)在許多國家都已經是逐漸應用成熟的服務,但是相對而言,法規的管制架構卻多仍處於追趕摸索的階段。   網路電視之相關法制爭議眾多,曾被提出討論者如攸關管制基準之網路電視定位,是否視同傳統廣播電視加以管制?相關之義務是否比照要求(如對於無線電視之必載義務)?網路電視市場之界定?市場力量之監督與公平競爭環境之維護等,皆為重要的關注焦點。   韓國國會傳播特別委員會於上月(11月)通過一項網路電視法案(IPTV Bill),對於重要之網路電視相關規範加以界定。此一國會傳播特別委員會所通過之網路電視服務法草案,對未來網路電視可能的市場主導者(包含廣播電視公司、網際網路服務提供者、電信公司等)之行為,事先加以規範。例如規定KT等重要電信公司提供網路電視服務並不需要另行成立附屬公司;另一方面,廣播電視公司未來將可提供全國性的網路電視服務,惟其市場佔有率將限於整體市場的三分之一以下。   未來的網路電視型態可能包含被動收視或主動要求播送,其他附加的服務更包含透過網路電視進行購物、遊戲、金融服務等,潛藏之商機已引起各界注意,也值得國內盡早思考整體管制架構,促進產業成熟發展。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

歐盟預計修法促進新穎性食品發展

  歐盟為了要加速新穎性食品之上市、促進食品科技之發展,並加強複製動物乳肉品、奈米食品或外來等新穎性食品之上市查驗,今(2008)年初歐盟執委會(Commission)即針對1997年新穎性食品規則(Regulation (EC) No 258/97 concerning novel foods and novel food ingredients)提出修正建議案,而現行規則最大爭議,則在於其未能涵蓋1997年以後才研發出的食品以及在歐盟未大量食用但在國外已廣泛食用等兩類食品。   新規則草案的修正重點,將放在:(1)排除已受其他專門法規管轄之食品,包含生技產品(即基因改造食品、GMO)、食品添加物、調味料、酵素、維他命與礦物質(類似我國健康食品、保健食品)等。(2)建立單一、簡化的中央查驗制度(centralised authorisation system),由歐盟食品安全署(EFSA)進行安全評估後由執委會發布許可。(3)明定適用範圍包含運用非傳統育種技術所得之植物來源食品(food of plant or animal origin when to the plant and animal is applied a non-traditional breeding technique not used before 15 May 1997),亦即含複製動物食品,以及運用新生產製程所得之食品(food to which is applied a new production process, not used before 15 May 1997),即涵蓋運用奈米科技所製造奈米食品。此外,新規則亦提供研發新科學證據及資料並申請獲准的公司,享有5年的資料專屬保護(data protection,即data exclusivity),用以促食品及食品生產技術之研發。

全國農民工會(NFU)向美國食品藥物管理局(FDA)正式提交食品安全現代化法案(FSMA)意見書

   自2011年歐巴馬政府頒布《食品安全現代化法》(Food Safety Modernization Act, FSMA)以來,美國食品藥物管理局(Food and Drug Administration, FDA)研擬多項配套法規和施行細則藉以強化FSMA食品安全標準之具體落實。此外,為形成產業、工協會各方之修法共識,FDA開啟為期一年之意見徵集期間。另於今年度(2013)11月15日,美國全國農民工會(National Farmers Union, NFU)正式向美國食品藥物管理局提交食品安全現代化法案(Food Safety Modernization Act, FSMA)具體意見書,該項意見書要點歸納如下: 1.全國農民工會表示此修法方向,有助於事前預防食源性疾病(foodborne illness)擴散與食品風險之控管,有效達成法規建構之目的。 2.由於配套法規涉及食品鏈供應商、農民與生產者之具體責任,建議政府應評估多階段意見諮詢期(comment period)之規劃,廣納各利益相關者具體建議。 3.全國農民工會針對農業用水的品質標準、檢測措施與規範提出不同之見解,亦建議縮短農產品禁用生物土壤改良劑的時間。

TOP