Uber竊取Waymo無人車技術機密一案,法院裁定返還1.4萬筆機密資料

  Waymo是Google旗下發展無人車技術的公司,其員工Anthony Levandowski(以下簡稱Levandowski)於2016年2月離職並成立自動駕駛卡車公司Otto,而Uber於同年8月以6.8億美元併購該公司,Levandowski則任職於Uber的自動駕駛車部門。

  Waymo在收到供應商誤發的電子郵件發現內含Uber的光學雷達(以下簡稱LIDAR)電路板工程圖,據Waymo表示,LIDAR是一種發展自動駕駛不可或缺的雷射感測器,該工程圖與Waymo設計的工程圖非常相似,此為工程師投入上千小時並投入數百萬美元研發而成。Waymo因而於今(2017)年2月對Uber提出告訴,主張Uber竊取其營業秘密與智慧財產,並表示Levandowski離開Waymo前曾使用私人硬碟下載公司上千筆機密資料,尚包括數名離職員工亦曾下載機密資料,且目前都任職於Uber。

  今(2017)年5月美國加州北區聯邦地方法院依Waymo提出的有利證據,包含Uber明知或應知Levandowski握有1.4萬筆與Waymo智財相關的機密資料仍聘僱其為員工;且有完整紀錄顯示Levandowski離職前曾下載Waymo機密文件。因此裁定要求Uber限制Levandowski與相關員工使用與本案相關的LIDAR技術,且須於今年5月31日前返還Waymo,其中包含會議紀錄和Levandowski與相關員工電話紀錄。惟Uber仍可持續發展其自動駕駛技術,但賦予Waymo的律師及技術專家有權監視Uber未來的商業發展,並要求Uber必須在同年6月前調查Levandowski完整的LIDAR技術書面與口頭溝通紀錄,並提交給Waymo。

  另方面,Waymo在此同時也宣布與Uber在美國的主要競爭對手Lyft建立自動車駕駛員的合作夥伴關係,挑戰Uber乘車服務的市場地位。本案將於今年6月7日進行審判程序,後續值得持續關注。

相關連結
你可能會想參加
※ Uber竊取Waymo無人車技術機密一案,法院裁定返還1.4萬筆機密資料, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7793&no=64&tp=1 (最後瀏覽日:2025/07/04)
引註此篇文章
你可能還會想看
日本擬讓司法機關偵查時利用GPS定位取得位置資訊無須事先告知,僅須取得法院令狀

  日本電信事業個人資料保護指針(電気通信事業における個人情報保護に関するガイドライン)自2011年修訂後至今即未有任何改變。然而,隨著現代行動通信軟硬設備技術的進步,智慧型手機中已有許多應用程式可透過GPS衛星定位功能準確獲取使用者之位置資訊,倘若司法機關也能於搜查辦案過程即時取得此定位資訊,將可提高偵查效率並縮短破案時程。   為此,日本總務省擬將原先須事先通知行動設備使用人與獲得法院令狀後,方得利用GPS衛星定位獲取位置資訊之電信事業個人資料保護指針第26條修訂為司法機關取得法院令狀後,即可利用GPS衛星定位獲取行動設備使用人位置訊息。   然此項修訂除將可能造成行動通訊業者營運上的額外負擔之外,亦有侵害設備使用者之個人隱私與個人資料疑慮。因此,為了抑止濫為偵查,法院令狀之發出須有其必要性,搜查機關亦必須向行動通訊業者為必要性之說明。   再者,此項利用GPS衛星定位獲取位置訊息之方式也僅限於使用Android系統設備且將定位功能開啟之使用者,對於使用Apple iOS系統設備之使用者則不但須使用者開啟定位功能,還須經過美商蘋果公司同意方能取得亦是一項難題。   日本總務省已於2015年4月17日發布此項法令修訂訊息並徵詢公眾意見,預計於6月完成修法並公布之。

日本修訂《建築節能法》,加強住宅、建築物之節能措施

  日本政府為實現2050淨零碳排目標,內閣於2022年4月22日公布《建築物のエネルギー消費性能の向上に関する法律》(譯:有關建築物能源使用效率提升的法律,下稱本法)修正案,加強住宅、建築物之能效提升措施。本次修正內容,主要包含: 擴大本法適用對象 因本法現僅規範大型規模建物(面積2,000平方公尺以上)及中型規模建物(面積300平方公尺以上,未滿2,000平方公尺);故修正案定2025年起,將所有新建的小型規模建築(面積未滿300平方公尺)及住宅均納入本法規定,不僅要求外牆和屋頂需增厚隔熱材質,並應使用高能效的空調及照明設備,以符節能標準。 擴大領先者計畫(Top Runner program) 以淨零耗能住宅(Zero Energy House, ZEH)及零耗能建築(Zero Energy Building, ZEB)為目標,最遲到2030年逐步提高實施節能標準。 實施節能裝修融資政策 國土交通省為促進既有建築物節能改造及鼓勵引進太陽能發電的新機制,將由住宅局編列預算,透過日本住宅金融支援機構(Japan Housing Finance Agency, JHF)辦理節能裝修低利息融資。

美國聯邦通訊委員會補助無訊號地區3G網路建設

  美國聯邦通訊委員會(Federal Communications Commission, FCC)自2010年推動「國家寬頻計畫」(National Broadband Plan)以來,即進行多項寬頻建設,使民眾於生活、工作及旅行途中,都能享受到行動寬頻網路與語音服務。而FCC於2012年2月規劃利用原普及服務基金(Universal Service Fund)下的行動通信基金(Mobility Fund)(兩者於2011年底均已劃入連接美國基金“Connect America Fund”)提撥出3億美金,一次性的提供業者於訊號未涵蓋區域進行3G網路基礎建設,並在未來三年內提供5億美金以供業者持續營運。   FCC預計於2012年9月2日,以反向拍賣(reverse auction)方式進行。由業者提出佈建方案、使用技術,並證明在競標區域內擁有足夠頻譜與建設能力,方能進入投標,最後由需要補助最少之業者得標。FCC希望利用此方式能促進市場競爭,使業者提出更積極之佈建方案。得標業者除獲得建設與營運補助外,並能為商用經營。本次拍賣將與其他頻譜執照拍賣方式類似,但就細部拍賣規則,將徵詢公眾意見後做出決定。   而為避免補助區域與已有3G訊號區域重疊,FCC就無3G訊號涵蓋區域繪製全國地圖,並公佈予投標者參考。原規劃區域為491,000區,但因過於狹小恐難以經營,故合併後為6,200區供業者競標。得標者負有義務必須於兩年之內於標得區域內完成3G網路佈建,或於3年內完成4G建設。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP