當前日本車聯網面對之相關課題及策略目標

  日本總務省下設之實現車聯網社會研究會(Connected Car 社会の実現に向けた研究会,下稱車聯網研究會),於2017年4月19日第4次會議中提出當前日本車聯網面對之相關課題及策略目標。至目前為止日本智慧型運輸系統(Intelligent Transportation System)各自已發展出道路交通資訊通信系統(Vehicle Information and Communication System,簡稱VICS)、電子收費系統(Electronic Toll Collection System,簡稱ETC)、雷達防追撞(レーダー)等不同通訊技術,自動駕駛則發展至初期階段。日本當前發展中面臨其企業國際競爭力確保與強化、持續友善環境之可能性、高齡化及勞動生產力人口減少等問題。希望透過國家開發之系統及國際服務方式,利用交通資訊通信系統實現最佳的交通狀態,在人口稀少之地區利用無人駕駛系統,使駕駛不足之問題得以解決,對當地之購物及交通上可以加以協助。車聯網研究會設定之4大目標為:

  1. 零交通事故之社會
  2. 確保人之行動自由
  3. 便利、快速、安心之生活環境
  4. 生活方式的變化

  透過利用車與車間通信等技術,降低事故之發生,普及車聯網等資通訊系統,車中行動模式之變革,並透過異業結合創造新的服務模式,達成安全、安心、便利之智慧聯網生活4大目標。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 當前日本車聯網面對之相關課題及策略目標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7809&no=67&tp=5 (最後瀏覽日:2025/04/05)
引註此篇文章
你可能還會想看
歐洲法院2017年12月認定Uber是運輸服務業

  巴塞隆納計程車工會認為Uber未受西班牙運輸服務業相關法令管制,而有違反公平競爭之虞,因此向西班牙巴塞隆納3號商事法院提起訴訟。3號商事法院認為有必要進一步釐清Uber之商業模式究竟是否為歐盟法令下之運輸服務業或資訊服務業,亦或兩者均是。這將影響歐盟內部市場指令和電子商務指令之涵蓋範圍,從而決定Uber是否有違反競爭法。   為此,歐洲法院在2017年5月做出先行裁決後,於同年12月做出判決,認定Uber之性質是運輸服務業,因此排除前述指令之適用,應接受各國運輸服務業相關法令之要求,否則違反公平競爭。法院觀點認為縱然其商業模式看似乘客與駕駛之間為自由選擇之連結。然而,Uber提供的平台是這個連結不可或缺的關鍵以外,對於運輸服務的提供,包括價格、車輛、駕駛的選擇具有決定性的影響力。此外,Uber藉由組織這樣的運輸服務來獲取利潤本身就涉及了運輸服務的直接提供。所以Uber整體服務的主要組成部分必須被視為以運輸服務構成,不應被分類為資訊服務。

美國聯邦交易委員會延展紅旗規則之施行日

  美國聯邦交易委員會(Federal Trade Commission,FTC)因應眾議院之要求,再次延展了紅旗規則(Red Flags Rule)之施行日,目前將由原先預定之2009年11月1日,延後至2010年6月1日施行。此規則最初預計於2008年11月1日施行,此次已是第四次延展。     所謂紅旗規則,原為「公平與正確信用交易法(Fair and Accurate Credit Transactions Act)」中之規定,依該法眾議院指示美國聯邦交易委員會及相關部門制定法規,用以規範金融機構及授信單位降低身分盜用之風險。基於此一指示,金融機構及授信單位必須研擬防止身分盜用的方案。詳言之,紅旗規則係要求凡管理使用包括性帳戶(covered account)者都應研擬並執行防止身分盜用之書面計劃。所謂的包括性帳戶係指:1.用於多次消費計算用途之帳戶,如信用卡帳戶、汽車貸款帳戶、手機帳戶、支票帳戶等;2.所有預期會產生身分盜用風險的帳戶,並不僅指於金融機構中所設立之帳戶。而前述應研擬之計畫將用以協助確認、偵測並解決身分盜用之行為。     由於只要用於支付計算,或有可能產生身分盜用風險之帳戶,均為包括性帳戶,而用於支付會計師款項之帳戶亦包含在內。惟美國會計師協會(American Institute of Certified Public Accountants, AICPA)要求FTC免除註冊會計師適用紅旗規則,該協會執行長Barry Melancon認為:「我們很在意紅旗規則的廣泛應用,因為我們並不認為當CPA之客戶付款時,會產生相當的身分冒用風險。」他指出該紅旗規則所帶來之負擔已超過其風險。AICPA並要求各州會計師協會去函對FTC表達排除適用之意見。而Melancon贊同FTC延後適用紅旗原則之決定,其並認為紅旗規則並無須廣泛運用於會計業,因為作為值得信賴的顧問,會計師對於其客戶應該都很熟悉,也會要求對身分資訊採取嚴格的隱私保護標準。     為了推動紅旗規則之適用,FTC已於紅旗規則之官方網站提供了該規則之適用綱領,並以座談會之方式對各團體進行運用之培訓。同時以出版企業之應用綱領,大量之文宣及宣導短片,對民眾提供諮詢服務等方式推廣紅旗規則。     而司法實務界對於此一規則之適用範圍亦開始表達其見解,在2009年10月30日,哥倫比亞地方法院判決律師業不適用紅旗規則。不過此次的延展施行公告並不會影響相關案件的進行及上訴流程,也不會影響其他聯邦部門對於金融機構及授信單位的監督。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

JST(日本科學技術振興機構)發表關於大學智財的政策建言

  於回顧過去10多年來在大學智慧財產相關的政策措施以後,日本科學技術振興機構(JST)智慧財產戰略中心於7月5日就「政策建言-回首長達十多年的大學智財相關政策措施並探求今後的發展」總結作出發表。根據外識學者專家所組成的JST智慧財產戰略委員會所作成的研議,其就大學智財此後所追求的目標願景,以及為達成該願景各個部門(政府、大學、技轉中心與JST)各自所應扮演的角色提出了整體的建議。   在建言中提到,大學智財的目標願景乃在於「以未來運用為導向擬定智財策略」與「確保研究成果轉化智慧財產,積極回饋國民社會」,並列舉各部門為達成目標願景所應執行之任務。   建言中主要提到的各部門任務如下所述: 【日本政府的任務】 ‧對於大學的智財評價,不應只限授權金收入,也應考慮共同研究、創新育成(由大學孕育而生的新創企業)的創出效果。 ‧應建構於獲得革新性的研究成果時,能夠搶先取得基礎專利、強化週邊專利的策略性的、機動性的強而有力的智財支援體制。 【日本大學、技轉中心的任務】 ‧為創造強勢的專礎專利,應能確保具備優秀判斷力的人材,與應進行充分的先前技術檢索。 ‧應以大學成果的早期實用化為導向,推進與中小、新創企業的合作關係。 ‧思考大學間、技轉中心間多樣而有效果的合作形態,積極謀求提升技轉機會。 ‧強化對學生與研究者的智財教育與智財進修。 【JST的任務】 ‧研析早期而積極的智財發掘與迅速而機動的資金投入等等主動性的支援模式。 ‧進行熟悉海外技術移轉的專業人材的配置與培育,且就對大學專利之權利侵害提供設置諮詢窗口等的支援措施。 ‧促進大學閒置專利的海外技術移轉。 ‧研議於鉅額資金投入而有多數大學、企業參與之特定大型計劃的場合,不受日本版the Bayh-Dole Act條款的限制,而由特定公共的機關等執行專利的管理。

TOP