美國國土安全部保護物聯網策略原則簡介

刊登期別
第29卷,第2期,2017年02月
 
隸屬計畫成果
自主研究
 

你可能會想參加
※ 美國國土安全部保護物聯網策略原則簡介, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7811&no=67&tp=1 (最後瀏覽日:2026/01/20)
引註此篇文章
你可能還會想看
日本經產省與國交省提出「自動駕駛推動發展與制度規劃」檢討報告

  日本經濟產業省於2016年11月14日召開第二次「自動駕駛商業檢討會」,邀請產官學研各界對於自動駕駛未來國際標準的動向以及諸如協調領域、社會接受度、制度和基礎建設等方面所涉議題,交換意見。   該檢討會首先注意到美國、歐洲以及韓國對於自動駕駛各式規則或指引制定的討論。在協調領域方面,檢討會指出:關於自動駕駛所需的地圖資訊,應由各汽車製造商協調,透過合作機制或規範來確保資訊與資金提供的公平性。   社會接受度方面,檢討會則提出建議考量是否需要針對不擅駕駛的高齡者或初學者,提供有效系統的必要性。在制度與基礎建設方面,檢討會則指出:以現狀而言,自動駕駛服務的商業永續性仍不明朗,必須持續進行實證試驗。   此外,為減少交通事故與因應少子化,與汽車的ICT革命等議題,由國土交通省於同年11月25日設立「自動駕駛戰略本部」(自動運転戦略本部),並於12月9日召開第一次會議。   該次會議討論的範圍包括:為實現無人駕駛的環境整備、自動駕駛技術的研發、普及與促進,以及為實現自動駕駛的實證與社會試驗。   會議結論則由國土交通大臣指示針對「車輛的技術基準」、「年長者事故對策」、「事故發生時的賠償規則」、「大卡車列隊行走」、「非平地道路間以車站為據點的自動駕駛服務」等議題速成立工作小組。

美國發布關於標準必要專利之政策宣言草案,擬修改核發禁制令態度

  美國司法部(United States Department of Justice)、美國專利商標局(The United States Patent and Trademark Office)、美國國家標準與技術研究院(National Institute of Standards and Technology)於2021年12月6日共同發布「修改『標準必要專利』授權協議及司法救濟方法之政策宣言草案」(Draft Policy Statement On Licensing Negotiations And Remedies For Standards-Essential Patents Subject To Voluntary FRAND Commitments,下稱2021政策宣言草案),並徵集公眾意見,截止時間為2022年2月4日。2021政策宣言草案係在回應2021年7月9日「促進美國經濟體競爭性行政命令」(Executive Order on Promoting Competition in the American Economy)關於檢討2019年「有關『標準必要專利』司法救濟方法之政策宣言」(Policy Statement On Remedies For Standards-Essential Patents Subject To Voluntary FRAND Commitments,下稱2019政策宣言)之要求。   2021政策宣言草案揭示了兩大重點: (一)改變SEP被侵害時,對禁制令(injunction)之核發態度   2021政策宣言草案對於「SEP被侵害時,是否核發禁制令」一事,擬回歸適用聯邦最高法院自eBay Inc. v. MercExchange, L.L.C., 547 U.S. 388 (2006)案以來,就禁制令之核發所設立之原則—(1)原告(專利權人)會因專利侵權而遭受無法填補(irreparable)的損害;(2)目前法律上之其他救濟方法,是不足以賠償專利權人所受的損害;(3)衡量專利權人及被授權人可能遭遇之困難,足認有必要進行衡平法上的救濟;(4)核發禁制令不會傷害到任何公共利益。 (二)揭示何謂符合「誠信原則」(good-faith)授權協議的指導原則 (1)雙方應以合宜態度推進授權協議:   以SEP專利權人而言,其應向潛在被授權人告知可能侵害該SEP的行為態樣;其並以「公平、合理及無歧視」(fair, reasonable, and non-discriminatory, FRAND)原則進行授權。   以SEP被授權人而言,其應於知悉以上資訊後,於商業上得被認為合理的時間內,以合宜態度推進該協議,或逕自接受該授權協議,或拒絕原要約而反向提出一合於FRAND原則之新要約(counteroffer)。其他合宜態度例如:就SEP專利權人提出進一步探詢(例如:詢問該SEP目前之專利有效性及有無侵權情形)或請求提供更具體的資訊,或建議目前雙方所遇到的授權上爭議可透過公正第三方解決。   茲有附言者,SEP專利權人在收到以上回應後,亦應「於合理的時間以合宜態度」推進授權協議,例如接受被授權人反向提出之新要約,或為使原授權協議較可被接受,再行提出一合於FRAND原則之授權條款,或回應被授權人想得知更多資訊之請求,或亦提出「可透過公正第三方解決雙方所遇到之授權紛爭」的方案等。 (2)雙方應合宜妥善解決紛爭:   如雙方因授權而生紛爭,建議尋求替代爭議解決方式(alternative dispute resolution);如仍欲透過司法解決,建議雙方就管轄法院達成合意,而非單方面擇定法院而提起訴訟。   此次徵求公眾意見的主要議題如下: (1)2021政策宣言草案是否較可適當平衡SEP專利權人及被授權人之利益? (2)「可申請核發禁制令」一事是否為SEP專利權人願意遵守FRAND原則的重要因素? (3)如何提升SEP授權協議之效率及透明度? (4)2021政策宣言草案所揭示對於SEP授權時之「誠信原則」之指導原則,可否為SEP授權協議建構良好架構? (5)是否有潛在SEP被授權人願意及不願意接受FRAND授權協議之情形? (6)有關單位是否曾經或應就SEP授權協議提供其他參考資訊?

美國最高法院認定美國環保署須負責管制溫室氣體排放

  今(2007)年4月2日,美國最高法院以5票對4票之決議,認定美國環保署(the Environmental Protection Agency)必須負責管制美國境內二氧化碳等溫室氣體之排放。過往,美國環保署主張其並無權限去管制溫室氣體排放,因為溫室氣體並不是美國潔淨空氣法(the Clear Air Act)所定義的空氣污染源(air pollutant)。然而,法院指出,在潔淨空氣法中要求美國環保署必須管制可能危害公眾健康或福祉的任何空氣污染源,而溫室氣體符合該法對於空氣污染源之定義,所以除非美國環保署可以斷定溫室氣體並未導致氣候變遷,或者可以提供合理解釋說明為何其無法判斷是否溫室氣體導致氣候變遷,否則美國環保署須依法對溫室氣體採取進一步行動。   判決同時指出,美國環保署不能以氣候變遷之不確定性為理由來迴避其職責,如果該不確定性足以防止美國環保署對於溫室氣體與氣候變遷兩者關聯做出合理判斷,則美國環保署必須說明清楚。   然而,持不同意見的法官則指出,法院應將全球暖化問題留給國會與總統來處理;且州政府(訴訟是由Massachusetts州為首的12個州政府對美國環保署提出)並無立場對美國環保署提出告訴。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP