2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。
本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。
報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。
本文為「經濟部產業技術司科技專案成果」
根據美國瑞生國際律師事務所(Latham & Watkins)於2024年1月發布的ESG年度報告指出,隨漂綠議題延燒,ESG報告不受信任為一課題,因此國際逐步擴大ESG監管,多國透過立法強制企業應揭露永續報告書或供應鏈資訊,比如:歐盟於2023年1月生效之《企業永續報告指令》(Corporate Sustainability Reporting Directive, CSRD),要求企業揭露的永續資訊需增加供應鏈資訊的透明度;美國證券交易委員會(SEC)於2024年3月6日通過規則,要求上市公司及公開發行公司揭露碳排放報告等氣候風險相關資訊。 為因應ESG帶來的挑戰,報告建議企業應採取流程化管理方式,了解產品進出口涉及的其他國家對ESG揭露資訊的要求,加以規劃並建置資料控管規範、進行人員教育訓練以及確認ESG相關資料的所有權歸屬。 由於碳排放量的計算沒有一致標準,且難以確保供應鏈上下游所提供的碳排資訊真實、未經竄改等問題,外界不容易信任企業永續發展書提倡的供應鏈減碳策略。國內企業可參考資策會科法所創意智財中心發布的《重要數位資料治理暨管理制度規範(EDGS)》,透過流程化管理,從制度規劃及留存供應鏈二氧化碳排放量或二氧化碳減量等產品相關資料歷程來增進ESG資料透明度。 本文同步刊登於TIPS網(https://www.tips.org.tw)
理財顧問主張前公司競業禁止條款違法,聲請法院中止仲裁程序於2025年,Parallel Advisors的理財顧問Nicole Amore(下稱Nicole)向其前雇主Falcon Wealth(下稱Falcon)提起訴訟,請求法院停止Falcon提起的仲裁程序。 本案源自於2025年2月,Nicole自Falcon離職後隨即加入Parallel Advisors,而同年4月,Falcon向仲裁機構申請仲裁,主張Nicole違反合約中關於離職後禁止招攬公司現有或者潛在客戶的規定,指稱Nicole除了下載或截圖公司客戶資訊至其個人設備外,更在尚未離職時即與客戶聯繫,通知客戶其即將轉任新公司之事。 對此,Nicole則援引《加州商業與職業法》第16600條和第16600.5條規定,主張該等競業禁止及限制招攬的條款為違法。 此類因為顧問移轉任職所引發之客戶資訊移轉爭議,在顧問產業中時有所聞,惟目前法院尚未對本案作出裁定,後續發展值得持續關注。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
個人資料保護脈絡下的「綑綁式同意」 OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。