新加坡國家研究基金會推出AI.SG計畫,促進人工智慧技術發展

  新加坡國家研究基金會(National Research Foundation,以下簡稱NRF)於2017年5月3日宣布AI.SG倡議,並將啟動國家級AI計畫。NRF將於五年內投資新加坡幣1.5億元,整合NRF,智慧國家與數位政府辦公室(Smart Nation and Digital Government),經濟發展委會(Economic Development Board),資通訊媒體發展局(Infocomm Media Development Authority),新加坡創新機構(SGInnovate)及整合健康資訊系統(Integrated Health Information Systems)等數個政府部門,以及位於新加坡的研究機構、AI新創公司與發展AI產品的企業等共同投入。計畫三大目標如下:

  1. 利用人工智慧來解決影響社會和產業的重大挑戰
      這些應用包括利用人工智慧解決交通尖峰時段壅塞問題,或應付人口老齡化帶來的醫療保健挑戰。IHiS執行長兼衛生部資訊長Mr.Bruce Liang表示:「醫療照護是需要高度知識及人性化的行業。多年來從新加坡在醫療照護數位化的發展中,可預見AI未來對於提升新加坡人民健康有很大幫助。例如在疾病預防、診斷、治療計畫、藥物治療、精準醫療、藥品開發等方面皆可發揮作用。醫護人員再加上AI工具,可以更完善解決未來對於醫療照護需求的增加。」
  2. 投入並深化技術能力,以掌握下一波科技創新
      其中包括可展現更多人類學習能力的下一代「可解釋的人工智慧」 (Explainable Artificial Intelligence,XAI),以及相關技術,例如電腦系統架構(軟體、韌體、硬體整合)和認知科學(Cognitive Science)。NRF獎助金和研究計畫將會支持相關科學活動。當地人才也將透過參與AI深度功能的開發進行培訓。
  3. 擴大產業對於AI和機器學習的使用
      AI.SG將與公司合作,利用AI來提高生產力,創造新產品,並輔導相關解決方案從實驗室進入市場。目標將支持100個AI研發項目和概念驗證,以利用戶能快速解決實際問題。並預計針對金融,醫療照護和城市管理解決方案領域具有特殊的潛力者先著手進行。

  AI.SG計畫此項推動工作,未來不僅將可激發新加坡的研究人員和用戶利用AI解決社會重大問題,也將影響全世界渴望利用人工智慧技術帶來更便利的生活,值得我國相關機關推動政策之參考依據。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 新加坡國家研究基金會推出AI.SG計畫,促進人工智慧技術發展, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7819&no=64&tp=1 (最後瀏覽日:2024/11/22)
引註此篇文章
你可能還會想看
Google被控不當蒐集蘋果公司Safari瀏覽器用戶的個人資料

  案件緣於Judith Vidal-Hall等三人對Google提告,主張Google規避蘋果公司Safari瀏覽器預設之隱私設定,在未取得用戶同意前,逕行使用cookies追蹤其網路活動,蒐集瀏覽器產生的資訊(the Browser-Generated Information, or ‘BGI’),並利用其對用戶發送目標廣告。原告認為這些作法可能使用戶的隱私資訊被第三人所探知,而且與Google保護隱私之公開聲明立場相違。此案於2015年3月27日由英國上訴審法官做成判決,並進入審理程序(裁判字號:[2015] EWCA Civ 311)。   本案主要爭點包含,究竟用戶因使用瀏覽器所產生的資訊是否屬於個人資料?濫用隱私資訊是否構成侵權行為?以及在沒有金錢損失(pecuniary loss)的情形下,是否仍符合英國資料保護法(Data Protection Act 1998)第13條所指損害(damage)的定義,進而得請求損害賠償?   法院於判決認定,英國資料保護法旨在實現「歐盟個人資料保護指令」(Data Protection Directive,95/46/EC)保護隱私權的規定,而非經濟上之權利,用以確保資料處理系統(data-processing systems)尊重並保護個人的基本權利及自由。並進一步說明,因隱私權的侵害往往造成精神損害,而非財產損害,從歐洲人權公約(European Convention of Human Rights)第八條之規定觀之,為求對於隱私權的保障,允許非財產權利的回復;倘若限縮對於損害(damage)的解釋,將會有礙於「歐盟個人資料保護指令」立法目的的貫徹。   法院強調,該判決並未創造新的訴因(cause of action),而是對於已經存在的訴因給予正確的法律定位。從而,因資料控制者(data controller)的不法侵害行為的任何損害,都可以依據英國資料保護法第13條第2項請求損害賠償。   本案原告律師表示:「這是一則具有里程碑意義的判決。」、「這開啟了一扇門,讓數以百萬計的英國蘋果用戶有機會對Google提起集體訴訟」。原告之一的Judith Vidal-Hall對此也表示肯定:「這是一場以弱勝強(David and Goliath)的勝利。」   註:Google 在2012年,曾因對蘋果公司在美國蒐集使用Safari瀏覽器用戶的個資,與美國聯邦貿易委員會(United States Federal Trade Commission)以2,250萬美元進行和解。

韓國修法簡化"孤兒著作法定授權程序"

  韓國著作權法施行令於今年(2012)4月12日修正,10月13日施行,其中值得注意的地方就是簡化「孤兒著作法定授權程序」,目的就是要改善孤兒著作授權,耗時過長的問題。在韓國,一般來說,取得孤兒著作授權要花2個月以上時間,而且對申請人而言,最困難的地方在於要證明已盡一切努力搜尋權利人未果,所以過去10年(2001~2011)內,只有37件孤兒著作獲得授權。   韓國孤兒著作法定授權程序之簡化內容為:除申請人可自行證明已盡相當努力外,政府可代為證明已盡相當努力,亦即只要符合「查詢著作權登記簿」、「查詢著作權集體管理團體之權利資訊目錄」、「著作在『尋找權利人資訊系統』公告3個月以上」等法定要件,即可認定已盡相當努力,直接准予授權使用孤兒著作。其目的主要就是要增進使用孤兒著作的便利性。   前述之「尋找權利人網站」:www.findcopyright.or.kr,係由韓國著作權委員會建置,申請人亦可在網站上申請孤兒著作授權。手續費每件1萬韓圜(相當於新台幣287.9元)。

加拿大全力降低廢氣排放

  加拿大政府十三日宣布,將在未來七年內投入百億元資金,達成京都議定書的二氧化碳減量目標。根據這項計劃,加拿大將在二○○二年至二○一二年之間,把全國溫室廢氣減少二億七千萬公噸,但其中對本國實際減少的排放量,以及透過向窮國購買排放權扣抵的比例,並未提出具體說明。   計劃中雖要求大型排廢單位在此期間內必須把廢氣排放量減少三千六百萬公噸,但也遠低於加國當初在簽署京都議定書時所承諾的五千五百萬公噸。此外,計劃中也還有很大一部份,仍待聯邦與各省及產業界進一步談判,其中也未訂出產業和民眾各需負擔的減量責任額。   加國主要環保智庫大衛鈴木基金會氣候變化計劃主任卡特則批評,這項計劃的最大缺點在於把排廢減量主要責任都推到一般民眾身上。卡特指出,加國每年產生的溫室廢氣中,只有二成三來自一般民眾,但依據該會的分析,加國政府在這項計劃中,將把高達七成四的減量責任都壓到民眾身上。   加國政府同時也計劃撥款,資助清潔能源和減少排廢相關科技研發,並致力推動宣導,呼籲、教育民眾和社區一起投入減少排廢。新公布的減排溫室氣體環保計劃主要包括三個部分:氣候變化基金、伙伴合作基金和研究基金。氣候變化基金將幫助加拿大企業在國內外購買和出售廢氣排放量的指標數。伙伴合作基金將主要用於各省之間的相關合作項目,如建立從東部到西部的電網,使各省都能利用清潔的水電能源,盡量減少煤電使用量等。研究基金主要用于開發能減少溫室氣體排放量的新技術。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP