日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】

  日本文部科學省於2002年提出產學合作契約範本,實行以來發現內容缺乏彈性,對於共同提交專利申請的共有專利權人能否進行商業化等研發成果歸屬問題規範不清。為此,2017年3月日本文部科學省科學技術及學術政策局參考英國智財局發布的Lambert toolkit等文件,提出11項合約範本,稱為【櫻花工具包】。

  該工具的主要目標是期望產學合作從在意權利共有轉為重視研發成果商業化,提出包括大學或企業單獨擁有研發成果、雙方共有研發成果等多類型的合作契約模式,並解析如何從數種模式中選擇最適合的合約範本,盡可能在產學合作契約簽訂前,事先考量研究成果的商業化策略,從而提高研發成果商業化的可能性。當中建議,在進行模型選擇時需考慮以下因素:

  1. 對研發成果的貢獻程度。 
  2. 智財權歸屬於大學的處理方法。 
  3. 是否有必要通過大學發布研究成果。 
  4. 研究成果歸屬(大學擁有、企業擁有、雙方共有)。 
  5. 雙方是否同意智財權共有。

  此外,為了盡可能使研究成果的智財權更廣泛應用,在參考適用範本時,皆應考量研發成果商業化的靈活性,無論智財權歸屬於大學或企業方,都必須滿足以下的條件:

  1. 不限制大學後續研究的可能性。 
  2. 所有的智財權都要適當的努力使其商業化。 
  3. 研究成果需在約定的期間內進行學術發表。

  日本此一工具包之內容對於產學合作研究之推展,提供了更細緻化的指引,或許可為我國推行相關政策之參考,值得持續關注其內涵與成效。

相關連結
※ 日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7836&no=64&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
你可能還會想看
美國司法部發布「防止受關注國家或個人近用美國敏感個人資料與政府相關資料」之最終規則,以因應國家安全威脅

美國司法部(Department of Justice, DOJ)於2025年1月8日發布「防止受關注國家或個人近用美國敏感個人資料與政府相關資料」(Preventing Access to U.S. Sensitive Personal Data and Government-Related Data by Countries of Concern or Covered Persons)之最終規則。該規則旨在避免特定國家或個人獲取大量國民敏感個人資料及政府相關資料,以降低國安威脅。 最終規則指出,去識別化敏感個人資料若經大量蒐集,仍可能被重新識別,因此原則上禁止或限制任何美國人在知情的情況下,與受關注的國家或個人進行該等資料的大量交易。其將敏感個人資料定義為社會安全碼、精確地理位置、車輛遙測資訊(vehicle telemetry information)、基因組以及個人健康、財務資料或其他足資識別個人之資料,並定義禁止及限制交易的型態。同時,最終規則除設有若干豁免交易類型外,也定有一般及特別許可交易規定,並授權司法部得核發、修改或撤銷前述許可。一般許可交易的類型將由總檢察長另行公布;特別許可則由總檢察長依個案酌情例外核准。 該規則課予交易方持續報告(reporting)、盡職調查(due diligence)、稽核(audit)、紀錄留存(recordkeeping)等義務,並針對涉及政府相關資訊或美國國民大量敏感個人資訊之商業交易,例如投資、雇傭、資料仲介(data brokerage)及供應商契約,提出資安要求,以降低受關注國家或個人獲取該類特定資訊的風險。最後,該規則定有民事罰款(37萬美金以下)、刑事處罰(100萬美金以下或20年以下徒刑),並設立申訴之救濟措施。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

美國加州通過藥價透明化法案

  美國在醫療費用的支出常常超乎預期,其中處方藥之花費就佔了相當大的比例。為了減少醫療費用支出,並讓藥物之價格更為透明,加州州長傑瑞布朗(Jerry Brown)在2017年10月9日簽署了第17號法案(藥價透明化法案),要求藥物製造商若要調高處方藥價格超過一定程度,則須事前通報給主管機關;該法預計於2018年10月1日生效。   藥價透明化法所稱之處方藥(prescription drugs),包含學名藥、原廠藥或特種藥品。本法之主管機關為「加州衛生計畫與發展辦公室」(Office of Statewide Health Planning and Development, OSHPD),掌管本法之執行並對違規製造商處罰民事罰款,本法案施行之相關細節亦由OSHPD訂定。OSHPD依據本法所得之罰款或收入,將全數交給「照護管理基金」(Managed Care Fund)做運用。   依據藥價透明化法規定,處方藥製造商對於其處方藥產品若欲調高產品公告目錄價(Wholesale Acquisition Cost, WAC)超過40美元/療程之漲幅者,須將處方藥漲幅、漲價原因、藥品使用情況或市場等資訊,以「季」為單位,至少於漲價生效60天前通報給加州衛生計畫與發展辦公室。若該藥品為新產品,其WAC超過「醫療保險處方藥物改良和更新法」(Medicare Prescription Drug, Improvement, and Modernization Act)所定之價格區間者,須於新產品上市後3天內通報給OSHPD。   OSHPD在收到處方藥製造商的通報資訊後,則須依法將資訊公開於其網站上。

歐盟法院同意嬌蘭口紅外盒設計可註冊為商標

  2021年7月14日歐盟普通法院裁定時尚品牌GUERLAIN法國嬌蘭(簡稱嬌蘭)口紅外盒形狀可註冊為商標。   嬌蘭於2018年針對其口紅外盒設計向歐盟智慧財產局(簡稱EUIPO)提出商標申請,EUIPO審查認為申請的商標缺乏識別性特徵並駁回申請;嬌蘭進而向EUIPO提出上訴,其上訴委員會維持該決定,理由為口紅立體形狀外盒設計與時尚產業領域的其他產品沒有“顯著差異”。   在上訴中,歐盟普通法院裁定EUIPO上訴委員會的決定無效。法院將嬌蘭的口紅設計與最常見的圓柱口紅形狀、平行六面體形狀進行比較,並指出嬌蘭申請的口紅外盒設計與市面上其他品牌之口紅外觀設計有明顯不同,認為該口紅外盒設計具有顯著特徵。   最終,歐盟普通法院說明判斷商標是否具有顯著性,不應該以商標在相關商品和服務所屬領域具有獨創性或未使用為依據;此外,僅僅立體形狀的新穎性和美觀特徵為主觀看法,不足以得出具有獨特性的結論,因為決定性的標準是該立體形狀可顯現出商品或服務來源的能力。同時,歐盟普通法院重申相關判定標準是嬌蘭口紅外盒立體設計方式以類似於船、搖籃或倒置金條的獨特形狀組成,明顯與時尚產業固有的口紅外盒的圓柱、平行六面體形狀設計規範和習慣大相徑庭,並且相關形狀特徵設計足以讓相關消費者藉以區辨服務來源。   在時尚品牌產業,商標本身通常不能成為區分品牌產品的唯一方式,尤其是當一個品牌提供多樣化的產品時更是難以認定具有獨特性。本案普通法院對立體形狀商標顯著特徵的認可無疑將為希望可保護其產品顯著設計元素的時尚品牌帶來曙光。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

TOP