日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】

  日本文部科學省於2002年提出產學合作契約範本,實行以來發現內容缺乏彈性,對於共同提交專利申請的共有專利權人能否進行商業化等研發成果歸屬問題規範不清。為此,2017年3月日本文部科學省科學技術及學術政策局參考英國智財局發布的Lambert toolkit等文件,提出11項合約範本,稱為【櫻花工具包】。

  該工具的主要目標是期望產學合作從在意權利共有轉為重視研發成果商業化,提出包括大學或企業單獨擁有研發成果、雙方共有研發成果等多類型的合作契約模式,並解析如何從數種模式中選擇最適合的合約範本,盡可能在產學合作契約簽訂前,事先考量研究成果的商業化策略,從而提高研發成果商業化的可能性。當中建議,在進行模型選擇時需考慮以下因素:

  1. 對研發成果的貢獻程度。 
  2. 智財權歸屬於大學的處理方法。 
  3. 是否有必要通過大學發布研究成果。 
  4. 研究成果歸屬(大學擁有、企業擁有、雙方共有)。 
  5. 雙方是否同意智財權共有。

  此外,為了盡可能使研究成果的智財權更廣泛應用,在參考適用範本時,皆應考量研發成果商業化的靈活性,無論智財權歸屬於大學或企業方,都必須滿足以下的條件:

  1. 不限制大學後續研究的可能性。 
  2. 所有的智財權都要適當的努力使其商業化。 
  3. 研究成果需在約定的期間內進行學術發表。

  日本此一工具包之內容對於產學合作研究之推展,提供了更細緻化的指引,或許可為我國推行相關政策之參考,值得持續關注其內涵與成效。

相關連結
※ 日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7836&no=64&tp=1 (最後瀏覽日:2026/02/08)
引註此篇文章
你可能還會想看
授權合約不公 飛利浦挨罰600萬

  公平交易委員會於上( 4 )個月 20 日對巨擘等三家光碟廠商檢舉荷蘭商菲利浦電子公司專利授權合約不公一案做成決議,飛利浦的 CD-R 專利技術授權合約,要求被授權人提供「製造設備清冊」及「書面銷售報告」,已足以影響交易秩序、顯失公平行為,違反公平交易法第 24 條規定,處新台幣 600 萬元罰鍰。這是公平會對飛利浦的 CD-R 光碟專利授權行為,作成的第二件處分案,第一件為飛利浦、 日本 新力及日商太陽誘電被檢舉,在台的 CD-R 光碟片產品專利授權行為,違反聯合行為的規定,飛利浦被處新台幣 800 萬元罰鍰,該案目前仍在行政訴訟中。   公平會認為,飛利浦與新力公司共同制定 CD-R 光碟片技術規格書,國內光碟廠商如生產符合「橘皮書」規格的 CD-R ,必須取得飛利浦專利授權,在 CD-R 專利授權的締約過程中,飛利浦具有相對優勢地位。飛利浦並在授權合約要求被授權人,提供「製造設備清冊」及「書面銷售報告」,內容涉及被授權人的產能利用率、產量、客戶名單及個別客戶交易量等重要資訊;但這些資料與權利金總數額的計算,並無密切相關。飛利浦除為此專利的專利權人,也授權其他製造廠商產製 CD-R 光碟片,並以 Philips 品牌從事光碟片販賣,與被授權人在市場是處於競爭地位。因此,飛利浦利用此優勢地位,取得被授權人公司經營成本的重要資訊,雙方在市場會產生不公平競爭。   飛利浦則表示,授權合約要求被授權人提供「製造設備清冊」及「書面銷售報告」,是為確認被授權人授權產品報告的正確性,這是國際授權實務上的慣例。飛利浦在合約已保證相關內容,不為合約目的外的使用,並無違法行為;該公司將循正常程序提出訴願。

美國環保署提出汽車廢氣排放新標準以加速電動汽車發展

美國環保署(United States Environmental Protection Agency, EPA)為限制汽車廢氣排放污染物對環境造成的危害,根據美國《潔淨空氣法》(Clean Air Act, CAA)的授權,於2023年4月12日提出《2027年式輕型、中型商用車車型污染物排放標準》(Multi-Pollutant Emissions Standards for Model Years 2027 and Later Light-Duty and Medium-Duty Vehicles),以及《重型商用車溫室氣體排放標準-第三階段》(Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles – Phase 3)這兩件汽車廢氣排放新標準,期加速電動汽車(Electric Vehicle, EVs)發展、加速潔淨交通轉型。 《2027年式輕型、中型商用車車型污染物排放標準》以及《重型商用車溫室氣體排放標準-第三階段》分別針對2027年到2032年所出廠的輕型商用車、中型商用車以及重型商用車的汽車廢氣排放標準做出更嚴格的新規範,預計將成為美國迄今為止最嚴格的汽車廢氣排放標準。目標是到2032年時,輕型商用車行駛每英里二氧化碳平均排放量下降至82公克,溫室氣體排放量相較於2026年車型年標準將減少56%;中型商用車行駛每英里二氧化碳平均排放量下降至275公克,溫室氣體排放量相較於2026年車型年標準則將減少44%。至於重型商用車,以重型拖曳機(heavy-haul tractors)為例,將從2027年車型年行駛每噸英里二氧化碳平均排放量48克,到2032年時下降至41公克左右。 根據這兩件汽車廢氣排放新標準,並未禁止化石燃料汽車的製造或銷售、亦未規範要求電動汽車的年製造量或年銷售量要達多少數量或比率,而是為汽車限定更嚴格的廢氣排放標準,因此,仍無疑地將迫使汽車製造商減少販售化石燃料汽車、加速推動電動汽車生產的腳步以符合新的排放標準規定。環保署預測汽車製造商在為符標準所採的相應作法之下將會大幅提高電動汽車在新車的銷售比率:到2032年時,電動汽車將佔輕型商用車新車銷量的 67%、中型商用車新車銷量的46%。而此累計可望到2055年時減少約100億噸的二氧化碳排放,相當於美國2022年二氧化碳總排放量的兩倍多。將有效減少有害空氣汙染、並大幅降低因空氣汙染所致的罹病風險以及過早死亡等危險。 藉由新的排放標準,將逐步淘汰化石燃料汽車的生產,加速潔淨交通轉型,有效應對氣候危機並提高全國各社區空氣品質。

美國國家標準與技術研究院「隱私框架1.0版」

  美國國家標準與技術研究院(NIST)於2020年1月16日發布「隱私框架1.0版」(NIST Privacy Framework Version 1.0),為促進資料的有效利用並兼顧對隱私權的保障,以風險管理(risk management)的概念為基礎建構企業組織隱私權管理框架。本隱私框架依循NIST於2018年所提出的「健全關鍵基礎設施資安框架1.1版」(Framework for Improving Critical Infrastructure Cybersecurity Version 1.1)架構,包含框架核心(Core)、狀態評估(Profile)與實施層級(Implementation Tier),以利組織能夠同時導入隱私與資安兩種框架。由隱私框架核心所建構的風險管理機制,透過狀態評估來判斷當前與設定目標的實施層級,進而完成組織在隱私保護上的具體流程與資源配置。   NIST基於透明、共識、兼顧公私利害關係人的程序訂定本隱私框架,用以促進開發者導入隱私設計思維(privacy by design),以及協助組織保護個人隱私,其目標包含透過支持產品或服務設計中的倫理決策(ethical decision-making)及最小化對隱私的侵害來建立客戶的信任;在當前與未來的產品或服務中,因應持續變化的技術與政策環境遵守對隱私的保護義務;以及促進個人、企業夥伴、稽核者(assessor)與監管者(regulator)在隱私權保護實踐上的溝通與合作。   本隱私框架並非法律或法規,亦不具備法律效果,而是做為數位時代下NIST協助企業導入隱私權管理制度的參考工具,企業或組織將能基於本隱私框架靈活應對多樣化的隱私需求,掌握其產品或服務所隱含的隱私權侵害風險,並識別隱私權相關法律規範,包含加州消費者隱私法(California Consumer Privacy Act)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)等,提出更具創新性與有效性的解決方案,並有效因應AI與物聯網技術的發展趨勢。

歐盟人工智慧辦公室發布「通用人工智慧實踐守則」草案,更進一步闡釋《人工智慧法》之監管規範

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟人工智慧辦公室(European AI Office)於2024 年 11 月 14 日發布「通用人工智慧實踐守則」(General-Purpose AI Code of Practice)草案,針對《人工智慧法》(Artificial Intelligence Act, AIA)當中有關通用人工智慧(General Purpose Artificial Intelligence, GPAI)之部分,更進一步闡釋相關規範。 本實踐守則草案主要分為4大部分,分別簡介如下: (1)緒論:描述本守則之4個基本目標,包含協助GPAI模型提供者履行義務、促進理解人工智慧價值鏈(value chain)、妥適保障智慧財產權、有效評估且緩解系統性風險(systemic risks)。 (2)GPAI模型提供者:有鑒於GPAI模型對於下游系統而言相當重要,此部分針對模型提供者訂定具體責任。不僅要求其提供訓練資料、模型架構、測試程序等說明文件,亦要求制定政策以規範模型用途防止濫用。另於智慧財產權方面,則要求GPAI模型提供者遵守「歐盟數位單一市場著作權指令」(Directive 2019/790/EC)之規定。 (3)系統性風險分類法(taxonomy):此部分定義GPAI模型之多種風險類別,諸如可能造成攻擊之資訊安全風險、影響民主之虛假資訊、特定族群之歧視、超出預期應用範圍之失控情形。 (4)高風險GPAI模型提供者:為防範系統性風險之危害,針對高風險GPAI模型提供者,本守則對其設立更高標準之義務。例如要求其於GPAI模型完整生命週期內持續評估風險並設計緩解措施。 本守則發布之次週,近千名利害關係人、歐盟成員國代表、國際觀察員即展開討論,透過參考此等回饋意見,預計將於2025年5月確定最終版本。

TOP