日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】

  日本文部科學省於2002年提出產學合作契約範本,實行以來發現內容缺乏彈性,對於共同提交專利申請的共有專利權人能否進行商業化等研發成果歸屬問題規範不清。為此,2017年3月日本文部科學省科學技術及學術政策局參考英國智財局發布的Lambert toolkit等文件,提出11項合約範本,稱為【櫻花工具包】。

  該工具的主要目標是期望產學合作從在意權利共有轉為重視研發成果商業化,提出包括大學或企業單獨擁有研發成果、雙方共有研發成果等多類型的合作契約模式,並解析如何從數種模式中選擇最適合的合約範本,盡可能在產學合作契約簽訂前,事先考量研究成果的商業化策略,從而提高研發成果商業化的可能性。當中建議,在進行模型選擇時需考慮以下因素:

  1. 對研發成果的貢獻程度。 
  2. 智財權歸屬於大學的處理方法。 
  3. 是否有必要通過大學發布研究成果。 
  4. 研究成果歸屬(大學擁有、企業擁有、雙方共有)。 
  5. 雙方是否同意智財權共有。

  此外,為了盡可能使研究成果的智財權更廣泛應用,在參考適用範本時,皆應考量研發成果商業化的靈活性,無論智財權歸屬於大學或企業方,都必須滿足以下的條件:

  1. 不限制大學後續研究的可能性。 
  2. 所有的智財權都要適當的努力使其商業化。 
  3. 研究成果需在約定的期間內進行學術發表。

  日本此一工具包之內容對於產學合作研究之推展,提供了更細緻化的指引,或許可為我國推行相關政策之參考,值得持續關注其內涵與成效。

相關連結
※ 日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7836&no=64&tp=1 (最後瀏覽日:2025/11/28)
引註此篇文章
你可能還會想看
新時代的管理利器-系統化的企業員工管理制度

英特爾將停用開源碼授權

  英特爾公司宣布,將廢止一項適用於部分自家軟體的開放原始碼授權辦法。這家晶片製造公司表示,已通知開放原始碼促進會 (Open Source Initiative ; OSI) 移除英特爾的開源碼授權許可,未來不再以 OSI 認可的授權形式繼續使用。 OSI 是一個非營利性機構,其宗旨在推廣使用開放原始碼軟體,並且在 OSI 網站上公布一份開放原始碼軟體授權清單。該公司希望把英特爾開放原始碼授權 (Intel Open Source License) 「移除,未來停用」,藉此降低授權協議日益增多的情形。    授權協議如雨後春筍般地孳生,已引起開放原始碼社群人士關切,因為授權版本大增之後,有意採用開放原始碼軟體的企業必須多花一些錢評估、管理各類型的授權,無形中導致成本增加。英特爾發言人表示,決定廢止開源碼授權,是發現公司內部數年來一直未使用,公司以外的使用頻率也不高。 Smith 說,英特爾不希望讓這項授權的「解除許可」效力回溯既往,以免迫使企業重新取得程式碼的使用授權。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

北歐能源科技觀點報告討論建築能源效率等為達碳中和所採措施

TOP