日本總務省之實現車聯網社會研究會(Connected Car 社会の実現に向けた研究会,下稱車聯網研究會),於2017年8月4日公布研究成果。車聯網研究會指出未來車聯網將面對①遠距離操作、網絡攻擊之威脅;②資料(Data)真實性之威脅;③隱私權之保護等三大威脅。針對遠距離操作、網絡攻擊之威脅,在汽車端及網路端皆應提出防止威脅之策略;在確保資料真實性方面,需建立機制,以防止資料中途被篡改;未來在車輛雲端資料之應用,應以隱私權保護為前提,始促進車輛資料之利用及活用,以保護相關人之隱私權。
車聯網研究會在促進實現車聯網社會策略中,希望透過①聯網計畫(Connected Network プロジェクト)、②互聯資料計畫(Connected Data プロジェクト)、③互聯平台計畫(Connected Platform プロジェクト)等三個計畫,共同建立推廣實證平台,以確立及實證必要之技術,建立資料利用及活用之模式及環境,架構開放性合作模式,並確保隱私及安全性。進而建設高度可靠性之無線通信網路、透過創新產業和商業模式促進資料之利用、創新環境的發展,達到解決日本之社會問題、實踐便利與舒適之生活、國家競爭力之強化與確保等車聯網社會三大目標,最終落實安全、安心、舒適的車聯網社會。
本文為「經濟部產業技術司科技專案成果」
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
金融科技(Fintech)專利戰局:那斯達克申請備份交易紀錄之區塊鍊專利近年來,大型銀行及信用卡公司爭相為其核心技術及在創新上的投資尋求專利保護。從2013年截至今日,數個大型金融機構在美國已至少申請近2700項專利,這些專利涵蓋目前最火紅的領域,包含:區塊鍊、分析以及資訊安全等。金融領域的專利申請量相較前三年已達到約百分之八十三的驚人成長。 全球最大的證券交易所之一那斯達克(NASDAQ)近年來亦投入區塊鍊技術的研發及應用。去年(2015)起,那斯達克便以區塊鍊技術搭建了私募股權的智能平台Linq,今年(2016)更提出了利用區塊鍊技術備份交易紀錄以保證交易安全的專利申請。 今年十月六日,美國專利商標局(United States Patent and Trademark Office,簡稱USPTO)公布一項新的專利申請「區塊鏈交易紀錄之系統與方法」(Systems and methods of blockchain transaction recordation)。這個專利在今年三月三十一日提出,發明人為那斯達克的企業結構資深副總裁Tom Fay,及企業結構協理副總裁Dominick Paniscotti。 具體而言,這個專利是由:一個電子錢包、一個委託簿(order book),以及配對引擎所組成。該配對引擎包含一項用來紀錄、且能夠及時更新交易紀錄的「封閉區塊鍊」。 該專利申請詳細介紹了這項技術:在這個系統中,當數據交易請求間之配對被辨認出來後,系統就會生成電子錢包及相應數據交易請求的hash值。當交易的一方收到另一方的hash值與相應資訊,各交易方的交易就會被增加至區塊鍊計算系統的區塊鍊上。在這個系統下,交易所查核區塊鍊的內容,尋找與這些電子錢包相關的數據。此外,這些數據資料會被額外備份於獨立的資料庫。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國司法部對標準制訂組織所採取之新政策出競爭法上之意見美國聯邦貿易委員會(Federal Trade Commission, FTC)於今(2006)年8月做出一項重要處分,認定Rambus Inc對其他標準制訂組織成員隱瞞其研發之多項電腦技術的專利,並打算在標準制訂組織採用特定標準後實施其專利的行為,乃以不法方式獨占市場之行為,違反反托拉斯法。 在FTC作成Rambus 的決定後,標準制訂組織也開始嘗試一些防止Rambus案情形發生的事前因應之道,例如已推動電腦系統互連標準的電腦協會VITA,就採行了一項新的標準制訂政策,該協會要求其參與成員必須承諾,階段性釋出其專利及專利申請的資訊,包括其所設定的最高權利金費率與可能採取的最嚴格的限制性授權條件;另其標準制訂政策也禁止成員間就此等專利的權利金費率或授權條件私下協商。由於有認為這種作法可能會被認為是破壞市場競爭秩序的杯葛行為,故VITA乃向美國司法部反托拉斯局徵詢其意見。 2006年10月30日,美國司法部反托拉斯局(Antitrust Division of the Department of Justice)提出一份商業檢視信函(business review letter, BRL),正式對此問題提出看法。司法部反托拉斯局在BRL中指出,基於以下幾點考量,VITA的標準制訂政策尚無限制競爭的疑慮:(1)共同制訂標準可能可帶來諸多有助於競爭的優點;(2)協會此項政策可使成員在推動制訂標準時,有更為充分的資訊作成決定;(3)專利授權條款的事前揭露可避免標準制訂可能因為事後過高的授權金,導致其導入或取代既有技術之時程被拖延。
2011年個人資料外洩事件與前年相比減少128件,總數為1551件-預測賠償金額比前年擴大1.5倍日本2011年個人資料外洩事件及事故的件數比前年減少為1551件,但洩漏的個人資料筆數卻超過前年一成以上,約有600萬筆個人資料外洩。從數字來看預估的賠償金額是超過1900億日幣。 日本網路資安協會(JNSA)與資訊安全大學研究所的原田研究室及廣松研究室共同針對報紙集網路媒體所報導的個人資料外洩相關事件及事故所進行的調查所做的結論。 新力集團旗下的海外公司雖然發生合計超過1億筆的大規模個人資料外洩的意外,但此一事故並無法明確判別是否屬於個人資料保護法的適用範圍,因此從今年的調查對象裡排除。 在2011年發生的資料外洩事件有1551件,比起前年的1679件減少128件,大約跟2009年所發生的個人資料外洩差不多水準。外洩的個人資料筆數總計約628萬4363筆,與前年相較約增加70萬筆。平均1件約洩漏4238筆個人資料。 將事故原因以件數為基礎來分析,可以發現「操作錯誤」佔全體的34.8%為第一位,其次是「管理過失」佔32%,再接下來是「遺失、忘記帶走」佔13.7%。但以筆數來看,值得注意的是「管理過失」佔37.7%最多,但「操作錯誤」就僅有佔2.3%的少數。 再以佔全體事件件數5%的「違法攜出」就佔了全體筆數的26.9%;在佔全體件數僅有1.2%的「違法存取」卻在筆數佔了20.9%,可以看到平均每一件的受害筆數有開始膨脹的傾向。 再者從發生外洩原因的儲存媒體來看,紙本佔了以件數計算的68.7%的大多數,以USB記憶體為首的外接式記憶體佔了10.1%;但以筆數計算的話,外接式記憶體佔了59.1%、網路佔了25.5%的不同的發生傾向。 從大規模意外來看,金融機關與保險業界是最值得注意,前10件裡佔了7件。從發生原因來看,「違法攜出」及「內部犯罪」所造成的事故10件中有4件,其次是「管理過失」。規模最大的是山陰合同銀行的受委託人將業務所需的165萬7131件個人資料攜出的事故。 依據2011年所發生的事件及事故的預估賠償額是1899億7379萬日幣。遠超過前年的1215億7600萬日幣。平均一起事件預估損害賠償金額有1億2810萬日幣,每人平均預估賠償金額是4萬8533日幣。