日本提出未來車聯網社會之三大威脅及促進實現車聯網社會策略

  日本總務省之實現車聯網社會研究會(Connected Car 社会の実現に向けた研究会,下稱車聯網研究會),於2017年8月4日公布研究成果。車聯網研究會指出未來車聯網將面對①遠距離操作、網絡攻擊之威脅;②資料(Data)真實性之威脅;③隱私權之保護等三大威脅。針對遠距離操作、網絡攻擊之威脅,在汽車端及網路端皆應提出防止威脅之策略;在確保資料真實性方面,需建立機制,以防止資料中途被篡改;未來在車輛雲端資料之應用,應以隱私權保護為前提,始促進車輛資料之利用及活用,以保護相關人之隱私權。

  車聯網研究會在促進實現車聯網社會策略中,希望透過①聯網計畫(Connected Network プロジェクト)、②互聯資料計畫(Connected Data プロジェクト)、③互聯平台計畫(Connected Platform プロジェクト)等三個計畫,共同建立推廣實證平台,以確立及實證必要之技術,建立資料利用及活用之模式及環境,架構開放性合作模式,並確保隱私及安全性。進而建設高度可靠性之無線通信網路、透過創新產業和商業模式促進資料之利用、創新環境的發展,達到解決日本之社會問題、實踐便利與舒適之生活、國家競爭力之強化與確保等車聯網社會三大目標,最終落實安全、安心、舒適的車聯網社會。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 日本提出未來車聯網社會之三大威脅及促進實現車聯網社會策略, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7847&no=64&tp=5 (最後瀏覽日:2026/02/01)
引註此篇文章
你可能還會想看
英國Royal Free國家健康服務基金信託與Google DeepMind間的資料分享協議違反英國資料保護法

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2017年7月公告Royal Free國家健康服務基金信託(Royal Free London NHS Foundation Trust)與Google人工智慧研究室DeepMind之間的資料分享協議,違反資料保護法(Data Protection Act)。   該協議之目的在使DeepMind利用Royal Free所提供的醫療資料,開發一款名為Streams的應用程式,透過人工智慧系統分析得知病患惡化之情況,並以手機警示方式通知臨床醫生。由於涉及病患的可識別個人資料且人數多達160萬人,協議的合法性,尤其在資料分享是否經病患同意方面,受到質疑。   Royal Free與DeepMind主張因應用程式是直接對病患進行醫療照護,具有病患默示同意(implied consent)之正當基礎,且資料經加密後才傳給DeepMind。惟經ICO調查結果如下: 就資料將被使用作為應用程式測試一事,病患未獲充分告知亦無合理期待; 雖執行隱私影響評估,惟僅於資料傳給DeepMind後才進行,無法發揮事前評估作用; 應用程式尚在測試階段,無法說明揭露160萬病患紀錄的必要性與手段合理性。   目前Royal Free已承諾改進以確保其行為合法性。ICO之認定突顯創新不應以「減損法律對基本隱私權保障」作為代價。

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

WIPO發表新冠肺炎防疫政策資訊追蹤平台,指出部分會員國已採取強制授權

  世界智慧財產組織(World Intellectual Property Organization, WIPO)於2020年5月5日發表WIPO新冠肺炎防疫政策資訊追蹤平台(WIPO COVID-19 IP Policy Tracker),方便民眾追蹤新冠肺炎期間,各國的智慧財產權應對措施變化。WIPO全球專利資料庫PATENTSCOPE也推出新檢索功能,以便對已公開的專利文獻進行定位和檢索,這些資訊對創新者研發對抗COVID-19疫情的新技術有所幫助。作為領導並推廣智慧財產權的國際組織,WIPO推出的新冠肺炎防疫政策資訊追蹤平台是一個資料庫,目標是讓利害關係人了解新冠肺炎期間各國相應的智慧財產權政策調整。各個主管機關推出的政策包含延長或寬限繳費期限、採取特殊措施,如強制授權(Compulsory Licenses)。   WIPO新冠肺炎防疫政策資訊追蹤平台有一個「自主行動專區」,指出不少機構、企業、和私部門中的智慧財產權所有權人,採取大量自主行動措施,用以緩解危機。其中包含著作權、專利等。值得一提的是由史丹佛Mark Lemley教授領銜主導的Open COVID Pledge,此計畫委員會由許多科學家、律師、企業家組成,號召產學研各領域透過開放智慧財產權,作為防疫之用。初始加入Open COVID Pledge的產業界夥伴包含Facebook、Amazon、Intel、IBM、Microsoft等科技巨頭,UBER、AT&T等亦從善如流。其中,連續27年蟬聯美國專利榜榜首的IBM,在2023年12月31日前免費提供80,000項專利。微軟則是透過技術和創新來追蹤疾病並開發解決方案,如:AI for Health、Bing COVID-19 Tracker。

台灣蕨類大會師

  台灣蕨類資源相當豐富,為保存台灣原生蕨類植物資源,我國政府於和平鄉鳥石坑規劃成立「蕨類園」,共蒐集台灣原生種蕨類 32科200多種,經過4年培育,蕨類生長茂盛,是很好的科學研究與生活旅遊教材。根據研究,台灣蕨類共37科、約620種,「蕨類園」的目標希望蒐集300至400種台灣中低海拔原生蕨類,做為種源保存、學術研究與解說教育之用。   蕨類是台灣常見的植物之一,在居家圍牆裂縫或庭園造景的石頭縫裡,就可觀察到鱗蓋鳳尾蕨、劍葉鳳尾蕨、細毛小毛蕨和腎蕨等蕨類,但是大多數民眾對蕨類卻非常陌生,因此該中心擬將蕨類納入社區生態與環境教育介紹的主題,教導參觀者如何欣賞各種蕨類之美。   台灣蕨類資源到底有多豐富?根據形容,台灣蕨類比整個歐洲還多,面績是台灣好幾倍大、且非常喜歡蕨類的紐西蘭,也只有 100多種。在單位面積分布上,台灣堪稱蕨類植物的天堂。因此 , 台灣「蕨類園」之成立將會是台灣生態保育的一個重要里程碑 。

TOP