德國訂定租戶電力促進法並修正相關再生能源法,以鼓勵太陽能發電直供

  為鼓勵出租人利用屋頂型太陽能裝置直接提供承租戶用電,並鼓勵推動民眾參與能源轉型,德國制訂「租戶電力促進法」(Gesetz zur Förderung von Mieterstrom)及修正相關再生能源法,並於2017年7月已正式生效。

  所謂「租戶電力」(Mieterstrom)係指來自建築物本身裝設或周遭區域裝置的太陽能設備生產之電力,未循傳統利用方式將電力饋入一般電網中,而直接就地(Vor Ort)提供給終端用戶(主要為建築物承租戶)電力使用。但查現行太陽能電力之利用狀況,發電設備所有人(同時也是出租人)多數仍選擇將發電饋入電網,以取得依再生能源法規定之相當報酬。新法制訂後,未來出租人將電力提供給承租人後仍可獲得同樣報酬,而原先承租人負擔許多自電網中購電必須支付的電網費、網路端分配費、電力稅及其他雜費,以及未來可能會產生的附加費等,也可節省下來。

  因此,透過本法將可提升發展與使用太陽能的經濟誘因。一方面促使出租人將太陽能發電直供承租人使用,依據其太陽能裝置及太陽能板鋪設大小,出租人約可獲得3.8歐分/kWh~2.75歐分/kWh之間的報酬,此外,並限制補助太陽能裝置為每年500MW以下,以確保發電容量符合用電發展。而依據德國經濟與能源部委託相關研究報告顯示,有高達380萬的家庭戶具備開發此種直接向租戶供電的潛力。另一方面,該法亦包含租戶電力契約的存續期間,及承租人將保有電力供應商的選擇權,並設定其租戶電力費用上限(修正能源經濟法§42a),以確保租戶電力費用具市場競爭力。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 德國訂定租戶電力促進法並修正相關再生能源法,以鼓勵太陽能發電直供, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7849&no=86&tp=1 (最後瀏覽日:2025/08/21)
引註此篇文章
你可能還會想看
美國修法通過,未來必要時可強制旅客接受AIT掃描

  近來美國運輸安全管理局(Transportation Security Administration, TSA)修訂隱私衝擊評估(Privacy Impact Assessment, PIA) 規章,規定機場安全檢查於必要時,可以針對某些特殊旅客強制進行AIT掃描。   美國運輸安全管理局根據航空運輸安全法(Aviation and Transportation Security Act, ATSA) 負責運輸之安全、評估威脅及強制執行安全相關的規定和要求,並且確保機場等交通設備是否有充足的安全措施。   由於國際恐怖攻擊行動頻傳,美國運輸安全管理局於2013年開始採行AIT掃描技術以強化旅客通關之安全檢查,並將會顯示出近乎裸照的3D透視影像全身掃描機器(body scanning machines)淘汰。   所謂的AIT(Advanced Imaging Technology)掃描技術,即係高階圖像技術,可偵測旅客是否有攜帶危險性、威脅性物品,它所顯示出來的影像僅係一個大致輪廓,如有違禁品則會在該部位產生色塊,警告安檢人員應採行進一步檢查措施。   一般而言,雖然旅客可拒絕AIT掃描,選擇讓海關人員進行身體檢查,但是為確保運輸安全,近來運輸安全管理局更新隱私衝擊評估(Privacy Impact Assessment, PIA) 規章,規定於必要時可以針對某些特殊旅客強制進行AIT掃描,旅客不再有拒絕之權利。   此一政策施行,勢必遭受侵害「隱私權」之質疑,運輸安全局表示,AIT掃描係採用「自動目標辨識」 (Automatic Target Recognition , ATR) 軟體,亦即非直接顯示個人影像,僅顯示特殊物體在一般影像上的所在位置,發出警訊後再由安檢人員進行詳細檢查。現今AIT掃描技術已提升,掃描出的人體圖像會被模糊處理,且掃描後機器不會儲存任何可識別個人之資訊,更加確保旅客的隱私權不受侵害。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

歐盟氣候相關資訊報告準則

  歐盟執委會(EU Commission)於2019年6月20日發布「氣候相關資訊報告準則」(Guidelines on reporting climate-related Information),該準則為歐盟執委會2018年3月通過的「永續金融行動計畫」(Action plan on sustainable finance )之一部分,旨在促使企業更完整的揭露其活動對氣候之影響,以及氣候變化對其業務之風險,讓投資人與融資機構獲有更全面的企業資訊以進行決策,同時引導市場資金轉向友善氣候之企業或商業模式。   關於企業氣候相關資訊之揭露,歐盟早在2014年11月15日通過的「非財務資訊報告指令」(Non-Financial Reporting Directive, 2014/95/EU)中要求擁有500名以上員工的大型企業必須揭露其經營與氣候保護間之關聯;為讓所有歐盟企業均有一致可資遵循的揭露標準,執委會嗣於2017年5月7日發布「非財務資訊報告準則」(Guidelines on Non-Financial Reporting);而本次發布之「氣候相關資訊報告準則」則是在2017年的「非財務資訊報告準則」基礎上所進行的補充,其特別之處在於整合了金融穩定委員會(Financial stability board)轄下「氣候相關財務揭露工作組」(Taskforce on climate-related financial disclosures, TCFD)所擬定之氣候資訊揭露建議,該建議詳細的說明了企業編制非財務類報告以揭露企業所面臨的氣候風險與機遇作法。   本準則建議企業分別在(1)商業模式、(2)企業政策、(3)政策成果、(4)風險管理、(5)關鍵績效指標五方面進行氣候相關資訊之揭露:在商業模式方面,例如描述公司對自然資源的依賴性、說明公司商業模式在應對氣候風險時的彈性及可能的變化;在企業政策方面,例如解釋公司如何將氣候相關問題納入運營決策流程、揭露公司在其能源政策中所設之能源相關目標;在政策成果方面,例如參考財務KPI做法描述公司在氣候方面的表現如何影響其財務績效;在風險管理方面,例如根據地理位置、業務活動詳細列出與氣候相關的主要風險、描述進行風險識別、評估的方法與頻率;在關鍵績效指標方面,例如描述主要氣候相關風險與財務關鍵績效指標之間的聯繫。

論專利公開前機密管理之重要性

美國德州第一上訴法院於2023年8月的一項裁決強調了以下重點—即便企業的智慧財產權戰略是圍繞在專利申請而建立的,仍應證明其有在專利公開前採取到位的營業秘密保護政策。 在FMC Technologies, Inc. v. Richard Murphy and Dril-Quip, Inc.一案中,FMC是一家石油與天然氣公司,而Murphy是其前首席工程師,可接觸FMC公司重要研發技術。兩者的關係於2018年惡化,同年12月FMC公司提出了ITW系統(orientation-free subsea tree system)的專利申請,Murphy則於隔年5月收到Dril-Quip公司的錄用通知。離職時Murphy有簽署一份協議,承認其有義務為FMC公司持有的專屬資訊保密,並已將所有與工作相關的資訊歸還。 Murphy於Dril-Quip公司被任命負責開發與ITW系統幾乎相同的競爭產品。2020年5月,Dril-Quip公司於海上技術會議發布其下一代海底採油系統(VXTe Subsea Tree)的相關內容,並宣布將商業化生產。據此,FMC公司控訴Murphy使用其花費了多年時間和數百萬美元開發的營業秘密資訊。Dril-Quip公司則辯稱FMC公司所謂的營業秘密可輕易透過一般管道查明,且其未採取合理的努力來防止營業秘密外洩。 在判斷FMC公司是否有採取合理保密措施時,德州第一上訴法院針對其於專利尚未公開及等待核准審定期間是否有採取合理的努力進行審查,並發現下列情形: 1. FMC公司並未根據有存取該機密資訊需求的人設定權限,反而將其工程資料庫開放給所有公司內部的工程師,讓他們都可以遠端存取相關資料。 2. FMC公司並未禁止員工將公司的機密文件複製到外部伺服器上。 據此,德州第一上訴法院認定FMC公司於專利公開前未妥善保護其營業秘密,並認為被告Murphy未不當使用其營業秘密。最終,德州第一上訴法院判被告Murphy勝訴。 由上述裁決可以發現,企業在專利公開前仍應採取營業秘密保護政策,包括:(1)對機密資訊存取的權限控管、(2)規範對機密資訊的使用程序、規定等,以避免在訴訟中失利。關於前述之管理措施,可以參考資策會科法所創意智財中心發布的《營業秘密保護管理規範》,以了解如何降低自身營業秘密外洩之風險,並提升競爭優勢。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP