日本政府擬建構自動駕駛實驗資料收集和共享體制

  日本內閣下設之日本經濟再生本部(日本経済再生本部),為實現2017年6月於「未來投資戰略2017」所提出之建立實驗資料共享體制政策,於2017年8月31日起舉辦自動駕駛官民協議會(自動走行に係る官民協議会),邀請政府相關部門及民間專家等關係人士,檢討自動駕駛實驗結果、實驗資料之共享,以及根據民間需求進行實驗計畫之工程管理等制度的整備方向,預計於年內針對複雜的駕駛環境制定共通指標,以釐清哪些資料是應收集之實驗資料,建構自動駕駛實驗資訊共享、收集體制。自動駕駛官民協議會預計在未來幾次會議中,針對應收集之實驗資料、標準格式、體制、實驗計畫的進程管理、官民合作事項等進行討論,並將在未來投資會議中報告檢討結果,其結果將與明年度之成長戰略一同反映於「官民ITS‧構想藍圖」(官民ITS構想・ロードマップ)中。

本文為「經濟部產業技術司科技專案成果」

※ 日本政府擬建構自動駕駛實驗資料收集和共享體制, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7871&no=64&tp=5 (最後瀏覽日:2026/01/28)
引註此篇文章
你可能還會想看
南韓政府推出新的無線網路推動計畫 搶佔智慧行動發展先機

  韓國通訊委員會(Korea Communications Commission,KCC)主席Choi See-jung於2010年4月21日宣布韓國政府將推動一項新的「無線網路活化計畫」(comprehensive plans for wireless internet activation),預計在未來五年間投入1兆5000億韓圜,與民間共同合作發展無線網路建設,以搶佔智慧行動領域的發展先機。   因應智慧手機發展速度倍增在政治面上帶來的需求,韓國政府希望透過本計畫能將南韓建設成「智慧行動領域的發電所(powerhouse)」。並據此願景規劃了4個政策目標、10項策略方案。此四個政策目標包括:確保在智慧行動領域的全球競爭力、推動智慧手機的普及與生產應用、營造世界最高水準的無線寬頻網路、強化下世代行動科技的發展與人才培育。   KCC將組成「網路去管制推動小組」(Internet de-regulation promotion team),於4月底開始著手進行包括定位資料保護、用戶識別系統和智慧手機的金流安控等領域的法規檢視與修正工作。   KCC預測能藉此創造12,535個工作機會、促進3,648億韓圜的產值。KCC同時解釋,透過對無線網路的活化應用,支持在各層面的創新應用發展(包括醫療服務、商業活動、教育等領域),此時正是奠定韓國成為行動服務核心業務強國的時機。

保險新品~開放原始碼保單

  由於開放原始碼的風氣盛行,使得許多 軟體業者 在使用開放原始碼軟體開發自家的軟體產品時,常不小心 逾越開放原始碼的授權範圍而陷身於 侵權的風險中。大抵一般比較常見的侵權情形,如企業開發專有軟體時, 利用單一或多樣以上的開放原始碼元件來建置,如交易工具或財產庫存管理應用程式等,而將這些程式流通於內部企業網路或是傳遞給外部客戶使用時,已構成”散佈”行為,是觸犯了開放原始碼 GPL ( General Public License ,通用公共許可 )授權 。   日前位於紐約的 開放原始碼風險管理公司( Open Source Risk Management , OSRM )結合 Lloyd's 保險業者 Kiln 及 Miller 保險經紀公司推出開放原始碼保單來承擔企業使用開放原始碼的風險,該保險單最高賠償金額為 1000 萬美元。平均而言,企業若是投保 100 萬美元的保單,每年大約必須支付 2 萬美元的保險費。

「自動駕駛車(self-driving car)」可否合法上路?

  「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。   目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。   而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。

美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統

紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。

TOP