日本政府擬建構自動駕駛實驗資料收集和共享體制

  日本內閣下設之日本經濟再生本部(日本経済再生本部),為實現2017年6月於「未來投資戰略2017」所提出之建立實驗資料共享體制政策,於2017年8月31日起舉辦自動駕駛官民協議會(自動走行に係る官民協議会),邀請政府相關部門及民間專家等關係人士,檢討自動駕駛實驗結果、實驗資料之共享,以及根據民間需求進行實驗計畫之工程管理等制度的整備方向,預計於年內針對複雜的駕駛環境制定共通指標,以釐清哪些資料是應收集之實驗資料,建構自動駕駛實驗資訊共享、收集體制。自動駕駛官民協議會預計在未來幾次會議中,針對應收集之實驗資料、標準格式、體制、實驗計畫的進程管理、官民合作事項等進行討論,並將在未來投資會議中報告檢討結果,其結果將與明年度之成長戰略一同反映於「官民ITS‧構想藍圖」(官民ITS構想・ロードマップ)中。

本文為「經濟部產業技術司科技專案成果」

※ 日本政府擬建構自動駕駛實驗資料收集和共享體制, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7871&no=64&tp=5 (最後瀏覽日:2025/12/06)
引註此篇文章
你可能還會想看
美國制訂「促進政府資訊開放」行政命令及推動「藍色按鈕倡議」計畫

  美國歐巴馬總統於2013年5月9日正式簽署「促進政府資訊開放並利機器讀取」行政命令(Executive Order 13642–Making Open and Machine Readable the New Defaut for Government Information),推崇聯邦政府過去釋出氣候、全球定位系統(GPS)等資訊對於私部門產業創新及新創事業(entrepreneurship and star-up)之正面影響,盼未來所有新增加的政府資料在資訊安全和隱私權雙重確保之前提下,將開放以可供機器可讀取之格式給公共大眾,帶動整體經濟正面循環發展。之前,美國推動聯邦政府資料開放政策,重要者為白宮科學技術政策辦公室(Office of Science and Technology Policy, OSTP)於2009年3月份啟動「開放政府倡議」(Open Government Initiative),民眾可透過「Data.gov」入口網站 ,取得高價值、機器可讀取之聯邦政府資料。   近年來,在公部門政府政策鼓勵導引下,不同的產業也逐漸發展出適用於特定產業的共同互通性標準(sectoral interoparability)。以醫療衛生領域為例,從2010年開始,歐巴馬總統乃宣布「藍色按鈕倡議」(Blue Button Initiative),病患得透過特定網頁(web-based)簡易下載其健康資訊(health information),並可供重複利用的格式下;同時,患者也可以選擇將該資訊分享給健康照護提供者(health care provider)、保險公司和信任的第三者(trusted third parties)。該倡議更挑戰軟體開發者(developer)在藍色按鈕的基礎上,開發更多的Apps軟體,使當事人更容易去管理掌控自身健康的狀況。在能源科技領域,近似於藍色按鈕倡議,白宮幕僚科技長Aneesh Chopra於2011年9月,也發起了「綠色按鈕倡議」(green button initaitive),挑戰美國境內大小事業單位(utilities)投入參與該倡議,研發一個機器可讀取之開放格式(a machine-readable open format),使消費者得透過連線網路重複近取之。   有鑒於網際網路開放的特性,且近年來來自外國網路攻擊不斷,於2013年2月份,NIST與國際間重要標準組織,如ISO、IEC和IEEE,首度就感應網絡(sensor networks)、機器對機器(M2M)和智慧聯網(IoT),提出一個跨界面之共通標準計畫(ISO/IEC/IEEE P21451-1-4 XMPP),該共通標準計畫內容包含: 封包傳輸(檢測)、全球獨特辨識、政策控制和加密,此共通標準得確保未來巨量資料領域資料近取之安全性 。

何謂專利適格(Patent Eligibility)的兩階段標準(Two-Step Test)?

  「專利適格」(Patent Subject Matter Eligibility)用淺白的文字解釋,就是成取得專利的基礎門檻、資格。專利適格的司法排除事項(Judicial Exception)為:「自然法則、自然現象、抽象概念」。而「兩階段標準」的導入,是給司法排除事項「敗部復活」的機會。   可取得專利適格的標的於35 U.S.C. §101有明文:「任何人發明或發現新穎而有用之程序(Process)、機器(Machine)、製品(Manufacture)或物之組合(Composition of Matter),或其新穎而有用之改良,皆得依據本法所定規定及要件就其取得專利權利。」但符合§101的敘述,不必然具專利適格。最高法院表示:「自然法則、自然現象、抽象概念是科學與科技成品的基礎,不可被獨佔。」然而,隨愈來愈多的發明與發現推出、電腦文明的發展,司法排除事項亦受挑戰,在 Mayo v. Prometheus,最高法院首次針對自然法則和自然現象提出「兩階段標準」。基此,美國專利與商標局(USPTO)2012年發表專利審查綱要。後續,Alice v. CLS Bank中,引「兩階段標準」將兩階段標準應用在「電腦應用過程、電腦系統、減免交割風險的電腦可讀媒介」的抽象概念。USPTO也將「兩階段標準」編入專利審查手冊(Manual of Patent Examining Procedure)。 USPTO專利審查手冊公布的「兩階段標準」: 第1步:四種可取得專利適格的標的(35 U.S.C. §101)   程序、機器、製品、物之組合。 第2A步:司法排除事項   假設不是「自然法則、自然現象、抽象概念」三種司法排除事項,則具專利適格;若是司法排除事項,則進入第2B步。 第2B步:是否「更具意義」(Significantly More)?   這一個步驟是「敗部復活」。如果該發明存在「發明概念」(Inventive Concept),則符合「更具意義」,可取得專利適格;反之,則無專利適格。

歐盟執委會提出《歐洲晶片法案》應對半導體短缺並加強歐洲技術領先地位

  歐盟執委會於2022年2月8日提出《歐洲晶片法案》(European Chips Act),以確保歐盟在半導體技術和應用的供應鏈安全、彈性和技術領先地位。近來全球半導體短缺,迫使汽車及醫療保健設備等眾多領域工廠關閉,部分歐盟成員國的汽車產量於2021年下降三分之一,顯示在複雜的全球地緣政治背景下,半導體價值鏈極度依賴數量有限的參與者。《歐洲晶片法案》將動員公共及私人投資歐洲半導體產業,金額超過430億歐元;並制定政策措施以預防、準備、預測和迅速應對未來任何供應鏈中斷情形,幫助歐盟實現2030年將現行晶片市場占比提升至20%的願景。《歐洲晶片法案》共分成八大章節,涵蓋歐洲晶片倡議、供應安全、監測和危機應對、治理模式、保密處罰及程序等議題。其中《歐洲晶片法案》主要由三大支柱組成,規範內容如下: 支柱一:歐洲晶片倡議(法案第3條至第9條)。歐洲晶片倡議將對現有關鍵數位技術重新進行戰略定位,以強化歐盟成員國和相關第三國及私營部門的「晶片聯合資源承諾」。歐盟預計將投入110億歐元用於加強研究、開發和創新,以確保部署先進半導體工具、原型設計實驗產線、測試和用於創新生活應用的新設備,培訓員工深入了解半導體生態系統和價值鏈。 支柱二:供應安全(法案第10條至第14條)。建立半導體「集成生產設施(Integrated Production Facility, IPF)」和「開放歐盟代工廠(Open EU Foundry, OEF)」,透過吸引投資與提高生產能力來建立供應安全的新框架,用以發展先進節點創新及節能晶片。此外,晶片基金將為新創企業提供融資管道,協助技術成熟並吸引投資者;投資歐洲基金(Invest EU)將設置專屬半導體股權投資的選項,以擴大歐洲半導體研發規模。 支柱三:監測和危機應對(法案第15條至第22條)。建立歐盟成員國和執委會間的協調機制,用以監測半導體供應、估計需求和預測短缺。透過蒐集企業的關鍵情報能發現歐洲主要弱點和瓶頸,從而監控半導體價值鏈穩定。歐盟將彙整危機評估報告並協調各成員國採取歐盟建議的應對方案,以便共同做出迅速正確的決定。

世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引

  世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則: 一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。 二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。 三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。 四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。 五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。 六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。

TOP