日本政府擬建構自動駕駛實驗資料收集和共享體制

  日本內閣下設之日本經濟再生本部(日本経済再生本部),為實現2017年6月於「未來投資戰略2017」所提出之建立實驗資料共享體制政策,於2017年8月31日起舉辦自動駕駛官民協議會(自動走行に係る官民協議会),邀請政府相關部門及民間專家等關係人士,檢討自動駕駛實驗結果、實驗資料之共享,以及根據民間需求進行實驗計畫之工程管理等制度的整備方向,預計於年內針對複雜的駕駛環境制定共通指標,以釐清哪些資料是應收集之實驗資料,建構自動駕駛實驗資訊共享、收集體制。自動駕駛官民協議會預計在未來幾次會議中,針對應收集之實驗資料、標準格式、體制、實驗計畫的進程管理、官民合作事項等進行討論,並將在未來投資會議中報告檢討結果,其結果將與明年度之成長戰略一同反映於「官民ITS‧構想藍圖」(官民ITS構想・ロードマップ)中。

本文為「經濟部產業技術司科技專案成果」

※ 日本政府擬建構自動駕駛實驗資料收集和共享體制, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7871&no=64&tp=5 (最後瀏覽日:2026/02/06)
引註此篇文章
你可能還會想看
歐盟創新採購機制觀測

美國加州通過《基因資訊隱私法》針對基因資訊建立個資保護機制

  美國加州州長於2021年10月6日正式簽署《基因資訊隱私法》(Genetic Information Privacy Act, GIPA), 將於2022 年 1 月 1 日生效。GIPA在聯邦法和州隱私法的框架下,補充建立基因資訊保護機制,規範無醫護人員參與的「直接面對消費者基因檢測公司」(Direct-to-consumer genetic testing company,下稱DTC公司)之個資保護義務,並要求DTC公司執行下列消費者基因資料(去識別化資料除外)之蒐集、利用、揭露,須獲消費者明示同意: 利用DTC公司產品或服務所蒐集之基因資料,應取得同意。其同意書須載明近用對象、共享方式,以及具體利用目的。 初步測試完成後儲存生物樣本,應取得同意。 目的外利用該基因資料或樣本,應取得同意。 向服務提供商外之第三方傳輸或揭露該基因資訊或樣本,應取得同意。其同意書須載明該第三方之名稱。 分析行銷或第三方依消費紀錄所進行之促銷,應取得同意。   上開同意之取得,不可使用黑暗模式(dark patterns)誤導消費者,並必須針對資料或樣本採取合理安全維護措施。   GIPA也新增消費者權利,保障消費者近用權和刪除權,DTC公司須制定政策,使消費者易於近用基因資料、刪除帳戶與基因資料、銷毀生物樣本等,並須於消費者依法撤回同意後30日內銷毀之,不得因行使權利而有差別待遇。DTC公司若GIPA違反規定,消費者擁有私人訴訟權。

下一個要控告的是…其它所有公司?

  Eolas,一家由加州大學資助成立的軟體技術研發公司,於1999年控告微軟侵犯了一個關於瀏覽器技術的專利 – US 5,838,906。該專利所揭露的技術讓微軟的IE瀏覽器得以嵌入互動式內容的外掛(plug-in)程式。2003年,美國芝加哥法院認定微軟侵犯906專利,並判決微軟必需賠償Eolas及加州大學5.21億美元。2007年,微軟終於暫時與Eolas達成和解,但兩家公司都不願透漏和解的內容。     美西時間2009年10月6日上午,Eolas大動作地控告包含科技業的Adobe、Amazon、Apple、eBay、Google、Sun Microsystems、Texas Instruments、Yahoo、YouTube,以及非科技業的Citigroup、JPMorgan Chase …等共22家公司,侵犯上述906專利以及其所衍生的US 7,599,985專利。Eolas表示:「985專利是 906專利的延續,其所揭露的技術能讓網站透過附加元件和Ajax網頁開發技術的使用,為其線上服務加入完全互動式的嵌入應用軟體。」     此外,Eolas總裁Michael Doyle博士也表示:「我們只想獲得公平的對待。本公司在15年前就已經研發並廣泛的展示這些技術。使用本公司的技術來營利且未付出合理報酬的情形對本公司並不公平。」 至於被控告的大多數公司目前都尚未做出正式的回應。

美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統

紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。

TOP