日本總務省為透過推動社會全體數位化,實現SDGs及Society 5.0目標,自2018年12月起召開「數位變革時代之ICT全球化戰略懇談會」(デジタル変革時代のICTグローバル戦略懇談会)檢討具體對策,並於2019年5月31日公布「ICT全球化戰略」(ICTグローバル戦略)。「ICT全球化戰略」基於社會全體數位化、推廣Society 5.0,以及透過提昇產業構造和勞動環境效率,創造具備豐富多彩價值之社會等理念,提出(1)透過數位化達成SDGs戰略︰公私部門合作推動社會全體之數位化,解決日本及世界社會問題;(2)資料流通戰略︰以確保個人資料之可控性為前提,推動制定國際規範及進行法制環境整備;(3)AI/IoT加值運用戰略︰提出以人類為中心之AI原則,檢討AI時代之資料重要性,推動AI人才培育;(4)網路安全戰略︰因應IoT機器和服務發展,確保網路安全性;(5)ICT海外展開戰略︰因應世界數位市場發展趨勢,檢討如何推動日本企業於海外發展;(6)開放創新戰略︰從利用次世代溝通技術提高生活品質、實現由資料所驅動之社會、建構支援未來之高度化網路等方向出發,推動相關研發計畫等6大戰略。
新加坡金融管理局發布《資料治理與管理實務》資訊文件新加坡金融管理局(Monetary Authority of Singapore,下文簡稱MAS)於2024年5月29日發布《資料治理與管理實務》(Data Governance and Management Practices: Observations and Supervisory Expectations From Thematic Inspections)文件。此文件係根據MAS於2022年至2023年期間針對國內系統性重要銀行(Domestic Systemically Important Banks,下文簡稱D-SIBs)進行「資料治理與管理架構」的主題式檢查結果加以研究與分析而作成,其內容包含MAS對於資料治理的期望、受檢銀行的優良實踐範例及缺失,希望未參與檢查的銀行與金融機構也能根據這份文件進行適當的改善措施。 MAS在《資料治理與管理實務》文件中提出關於五大主題的監管期待,簡要說明如下: 1.董事會和高階管理層的監督: 董事會和高階管理層應加強監督資料治理。例如,定期向董事會報告資料管理領域的重要問題;高階管理層應即時獲得準確且完整的相關資訊,並對資料風險進行分析。 2.設置資料管理單位: 銀行應建立資料管理單位,並為資料管理辦公室提供明確的任務授權,以利其監測資料的品質。 3.資料品質之管理與控制: 銀行應建立資料品質管理架構與流程,以確保資料在整個生命週期中是有品質的。例如,建立有效控制資料流的機制;建立資料品質指標或計分卡;使用終端使用者運算工具(end-user computing tools)處理資料時,應納入風險評估和控制架構來管理。 4.資料品質控制資料之問題識別與升級: 銀行應制定升級標準和行動計畫,以改善資料品質。另外MAS也建議銀行應該要有強大且完整的資料譜系(data lineage)來辨識資料問題並將之改善。 5.BCBS 239原則之擴大適用:BCBS 239原則係巴賽爾銀行監理委員會(the Basel Committee on Banking Supervision)第239號規範:《有效風險資料聚合及風險報告原則》(Principles for effective risk data aggregation and risk reporting),適用於全球的系統性重要銀行(Global Systemically Important Banks),巴賽爾銀行監理委員會同時建議D-SIBs宜遵循此原則,因此MAS亦要求新加坡境內7家D-SIBs須遵守BCBS 239原則的相關規範。此外,MAS仍期待各銀行與金融機構可以擴大BCBS 239原則的適用範圍,例如在範圍內報告(in-scope reports,或稱主要風險報告)中納入反洗錢、稅務管理等面向。由於金融服務是一個由資料驅動的產業,資料已然是金融業重要的戰略資產。MAS期盼這份文件能夠讓所有銀行及金融機構提升其資料治理能力,並針對內部的問題進行改善。
新加坡擬禁止未獲所有人同意下測試和研究基因新加坡生物道德諮詢委員會五日發表基因檢驗與研究道德準則草案,草案建議政府禁止基因研究者在未獲得同意之下取得基因進行測試與研究,同時也禁止採用基因檢驗來選擇胎兒的性別。新加坡生物道德諮詢委員公布基因檢驗與研究道德準則草案,共提出二十四項建議,希望能在研究人員從事基因研究時,保障人權。 草案建議政府,任何基因測試除非獲得基因所有人同意,否則不得進行。,產前基因篩檢只能限於確保孩子的健康,不要把先天性疾病遺傳給下一代,但不能用在選擇生男或生女。草案規範,研究員或醫生不能把基因研究結果透露給第三者,包括雇主和保險公司知道,以保障個人隱私。 委員會已經把草案公布在網站上供民眾查閱,並分送給一百一十四個機構,徵詢公眾和機構的看法;委員會將在年底向星國生命科學部長級會議提出報告。
「巨量資料應用」當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。 在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。